Del E. Webb School of Construction

William W. Badger
Director
(SCOB 241) 480/965-3615
caspub.eas.asu.edu/dewsc

PROFESSORS
BADGER, MULLIGAN
ASSOCIATE PROFESSORS
BASHFORD, DUFFY, ERNZEN, KASHIWAGI,
SAWNEY, WALSH, WEBER
ASSISTANT PROFESSORS
CHASEY, KNUTSON, WIEZEL
VISITING EMINENT SCHOLAR
SCHEXNAYDER

PURPOSE
Construction careers are so broadly diversified that no single curriculum prepares the student for universal entry into all fields. As an example, heavy construction contractors usually place more emphasis on technical and engineering science skills than do residential contractorsdevelopers, who usually prefer a greater depth of knowledge in management and construction. To ensure a balanced understanding of the technical, professional, and philosophical standards that distinguish modern-day constructors advisory groups representing leading associations of contractors and builders provide counsel in curriculum development. Construction has a common core of engineering science, management, and behavioral courses on which students may build defined concentrations to suit individual backgrounds, aptitudes, and objectives. These concentrations are not absolute but generally match major divisions of the construction industry.

DEGREES
Construction—B.S.
The faculty in the Del E. Webb School of Construction offer the B.S. degree in Construction. Four concentrations are available: general building construction, heavy construction, residential construction, and specialty construction.

Each concentration is arranged to accent requisite technical skills and to develop management, leadership, and competitive qualities in the student. Prescribed are a combination of General Studies courses, technical courses basic to engineering and construction, and courses on a broad range of applied management subjects fundamental to the business of construction contracting.

Construction—M.S.
The faculty in the school also offer the M.S. degree in Construction. Details for this degree are found in the Graduate Catalog.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.

DEGREE REQUIREMENTS
A minimum of 128 semester hours with at least 50 hours at the upper-division level is required for graduation in

Professional Accreditation and Affiliations. The Del E. Webb School of Construction is a member of the Associated Schools of Construction, an organization dedicated to the development and advancement of construction education. The construction program is accredited by the American Council for Construction Education.

SPECIAL PROGRAMS
The Del E. Webb School of Construction maintains a cooperative agreement with community colleges within Arizona and also with selected out-of-state colleges and universities to structure courses that are directly transferable into the construction program at ASU.

Student Organizations. The school has a chapter of Sigma Lambda Chi, a national honor society that recognizes high academic achievement in accepted construction programs. The school is also host to the Associated General Contractors of America student chapter, the National Association of Home Builders student chapter, and the Construction Women’s Alliance.

Scholarships. Apart from those given by the university, a number of scholarships from the construction industry are awarded to students registered in the construction program. The scholarships are awarded on the basis of academic achievement and participation in activities of the construction program.

ADMISSION
For information regarding requirements for admission, transfer, retention, qualification, and reinstatement, see “Undergraduate Admission,” page 54; “Admission,” page 201; and “College Degree Requirements,” page 203. A preprofessional category is available for applicants deficient in regular admission requirements. Vocational and craft-oriented courses taught at the community colleges are not accepted for credit toward a bachelor’s degree in Construction.

BASIC REQUIREMENTS
Students complete the following basic requirements before registering for advanced courses: (1) All first-semester, first-year courses and the university First-Year Composition requirement (see “University Graduation Requirements,” page 74) must be completed by the time the student has accumulated 48 semester hours of program requirements, and (2) all second-semester, first-year courses must be completed by the time the student has completed 64 semester hours of program requirements. Transfer students are given a one-semester waiver. Participation in a summer field internship activity is required for all students between the second and third years of the program.

Any student not making satisfactory progress is permitted to register for only those courses required to correct any deficiencies.
general building construction, heavy construction, residential construction, and specialty construction. Students in all concentrations are required to complete a construction core of science-based engineering, construction, and management courses.

GRADUATION REQUIREMENTS
A student must earn a grade of “C” or higher in the mathematics and physics courses listed in the program of study. In addition to fulfilling school and major requirements, majors must satisfy the General Studies requirements as noted in “General Studies,” page 78, and all university graduation requirements as noted in “University Graduation Requirements,” page 74. Note that all three General Studies awareness areas are required. Consult your advisor for an approved list of courses.

SCHOOL COURSE REQUIREMENTS
The school requires that the General Studies requirement be satisfied in the following manner:

Humanities and Fine Arts/Social and Behavioral Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON 101</td>
<td>Construction and Culture: A Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECN 111</td>
<td>Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>ECN 112</td>
<td>Microeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>HU/GH</td>
<td>Awareness area courses as needed</td>
<td>6</td>
</tr>
</tbody>
</table>

Natural Sciences

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 111</td>
<td>General Physics SQ</td>
<td>3</td>
</tr>
<tr>
<td>PHY 112</td>
<td>General Physics SQ</td>
<td>3</td>
</tr>
<tr>
<td>PHY 113</td>
<td>General Physics Laboratory SQ</td>
<td>1</td>
</tr>
<tr>
<td>PHY 114</td>
<td>General Physics Laboratory SQ</td>
<td>1</td>
</tr>
</tbody>
</table>

Mathematical Studies

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAT 270</td>
<td>Calculus with Analytic Geometry I MA</td>
<td>4</td>
</tr>
<tr>
<td>STP 226</td>
<td>Elements of Statistics CS</td>
<td>3</td>
</tr>
</tbody>
</table>

General Studies/school requirements total | 36

1. Both PHY 111 and 113 must be taken to secure SQ credit.
2. Both PHY 112 and 114 must be taken to secure SQ credit.
3. Because of the school’s requirement for MAT 270, the total semester hours exceed the General Studies requirement of 35.

Construction Major Requirements Common to All Concentrations (Except as Noted)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 230</td>
<td>Uses of Accounting Information I</td>
<td>3</td>
</tr>
<tr>
<td>or ACC 394 ST: Financial Analysis and Accounting for Small Businesses (3)*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CEE 340</td>
<td>Hydraulics and Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CON 221</td>
<td>Applied Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>CON 243</td>
<td>Heavy Construction Equipment, Methods, and Materials</td>
<td>3</td>
</tr>
<tr>
<td>CON 251</td>
<td>Microcomputer Applications for Construction</td>
<td>3</td>
</tr>
<tr>
<td>CON 252</td>
<td>Building Construction Methods, Materials, and Equipment</td>
<td>3</td>
</tr>
<tr>
<td>CON 273</td>
<td>Electrical Construction Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CON 296</td>
<td>Field Internship</td>
<td>0</td>
</tr>
<tr>
<td>CON 310</td>
<td>Testing of Materials for Construction</td>
<td>3</td>
</tr>
<tr>
<td>CON 323</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
<tr>
<td>CON 341</td>
<td>Surveying</td>
<td>3</td>
</tr>
<tr>
<td>CON 345</td>
<td>Mechanical Systems</td>
<td>3</td>
</tr>
<tr>
<td>CON 371</td>
<td>Construction Management and Safety</td>
<td>3</td>
</tr>
<tr>
<td>CON 383</td>
<td>Construction Estimating</td>
<td>3</td>
</tr>
<tr>
<td>CON 389</td>
<td>Construction Cost Accounting and Control CS</td>
<td>3</td>
</tr>
<tr>
<td>CON 424</td>
<td>Structural Design</td>
<td>3</td>
</tr>
<tr>
<td>CON 450</td>
<td>Soil Mechanics in Construction</td>
<td>3</td>
</tr>
<tr>
<td>CON 453</td>
<td>Construction Labor Management</td>
<td>3</td>
</tr>
<tr>
<td>CON 455</td>
<td>Construction Project Management</td>
<td>3</td>
</tr>
<tr>
<td>CON 463</td>
<td>Foundations</td>
<td>3</td>
</tr>
<tr>
<td>CON 495</td>
<td>Construction Planning and Scheduling CS</td>
<td>3</td>
</tr>
<tr>
<td>ECE 100</td>
<td>Introduction to Engineering Design CS</td>
<td>4</td>
</tr>
<tr>
<td>LES 305</td>
<td>Legal, Ethical, and Regulatory Issues in Business</td>
<td>3</td>
</tr>
<tr>
<td>or LES 306 Business Law (3) (ASU West)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>or LES 380 Consumer Perspective of Business Law (3)</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Science elective with lab | 4

Total common to all concentrations | 71

* ACC 394 ST: Financial Analysis and Accounting for Small Businesses is recommended.

Advisor-approved alternates/transfer credits for these courses may vary from the total required semester hours indicated. Such variances do not reduce the minimum of 128 semester hours required for the degree.

The course work for the first two years is the same for all concentrations.

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON 101</td>
<td>Construction and Culture: A Built Environment</td>
<td>3</td>
</tr>
<tr>
<td>ECN 111</td>
<td>Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>ENG 101</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 270</td>
<td>Calculus with Analytic Geometry I MA</td>
<td>4</td>
</tr>
<tr>
<td>PHY 111</td>
<td>General Physics SQ</td>
<td>3</td>
</tr>
<tr>
<td>PHY 113</td>
<td>General Physics Laboratory SQ</td>
<td>1</td>
</tr>
</tbody>
</table>

Total | 17

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 100</td>
<td>Introduction to Engineering Design CS</td>
<td>4</td>
</tr>
<tr>
<td>ECN 112</td>
<td>Microeconomic Principles SB</td>
<td>3</td>
</tr>
<tr>
<td>ENG 102</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>PHY 112</td>
<td>General Physics SQ</td>
<td>3</td>
</tr>
<tr>
<td>PHY 114</td>
<td>General Physics Laboratory SQ</td>
<td>1</td>
</tr>
<tr>
<td>HU elective with awareness area as needed</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Total | 17

Third Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>CON 221</td>
<td>Applied Engineering Mechanics: Statics</td>
<td>3</td>
</tr>
<tr>
<td>CON 245</td>
<td>Heavy Construction Equipment, Methods, and Materials</td>
<td>3</td>
</tr>
<tr>
<td>CON 251</td>
<td>Microcomputer Applications for Construction</td>
<td>3</td>
</tr>
<tr>
<td>CON 273</td>
<td>Electrical Construction Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>STP 226</td>
<td>Elements of Statistics CS</td>
<td>3</td>
</tr>
</tbody>
</table>

Total | 15

Fourth Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Semester Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC 230</td>
<td>Uses of Accounting Information I</td>
<td>3</td>
</tr>
<tr>
<td>or ACC 394 ST: Financial Analysis and Accounting for Small Businesses (3)*</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>COM 225</td>
<td>Public Speaking L</td>
<td>3</td>
</tr>
<tr>
<td>CON 252</td>
<td>Building Construction Methods, Materials, and Equipment</td>
<td>3</td>
</tr>
<tr>
<td>CON 323</td>
<td>Strength of Materials</td>
<td>3</td>
</tr>
</tbody>
</table>
Basic science elective with lab .. 4
Total .. 16

1 Both PHY 111 and 113 must be taken to secure SQ credit.
2 Both PHY 112 and 114 must be taken to secure SQ credit.
3 ACC 394 ST: Financial Analysis and Accounting for Small Businesses is recommended.

Concentration in General Building Construction
The general building construction concentration provides a foundation for students who wish to pursue careers as estimators, project managers, project engineers, and eventually, owners of firms engaged in the construction of residential, commercial, and institutional structures. Educational focus is on building systems required for the mass development and production of large-scale projects. General building construction is addressed as an integrated process from conception through delivery of completed facilities to users.

Requirements
CON 472 Development Feasibility Reports L 3
CON 483 Advanced Building Estimating .. 3
PUP 432 Planning and Development Control Law 3
or PUP 433 Zoning Ordinances, Subdivision Regulations, and Building Codes (3)
REA 380 Real Estate Fundamentals ... 3
Upper-division technical elective .. 3
Total .. 15

Concentration in Heavy Construction
The heavy construction concentration prepares students for careers related to the public works discipline. Typical projects in which they are involved are highways, railroads, airports, power plants, rapid transit systems, process plants, harbor and waterfront facilities, pipelines, dams, tunnels, bridges, canals, sewerage and water works, and mass earthwork.

Requirements
CON 344 Route Surveying .. 3
CON 486 Heavy Construction Estimating 3
Upper-division business electives ... 6
Upper-division technical elective .. 3
Total .. 15

Concentration in Residential Construction
The residential construction concentration prepares students for careers in the residential sector of the industry. This concentration covers the specific methods and processes during the planning, production, marketing, and business-related activities common to residential construction.

Requirements
CON 377 Residential Construction Production Procedures 3
CON 477 Residential Construction Business Practices 3
CON 484 Internship ... 3
MKT 300 Principles of Marketing .. 3
PUP 432 Planning and Development Control Law 3
or PUP 433 Zoning Ordinances, Subdivision Regulations, and Building Codes (3)
Total .. 15

Concentration in Specialty Construction
The specialty construction concentration prepares students for careers with specialty constructors, such as mechanical and electrical construction firms. It emphasizes the construction process at the trade contractor level.

Requirements
CON 468 Mechanical and Electrical Estimating 3
CON 471 Mechanical and Electrical Project Management 3
CON 494 ST: Cleanroom Construction ... 3
Upper-division business electives ... 6
Total .. 15

CONSTRUCTION (CON)

CON 101 Construction and Culture: A Built Environment. (3)
fall and spring
Analysis of the cultural context of construction, emphasizing its centrality in the evolution and expansion of built environments as expressions of ethical and historical value systems. Lecture, speakers.
General Studies: HU, G, H

CON 221 Applied Engineering Mechanics: Statics. (3)
fall and spring
Vectors, forces and moments, force systems, equilibrium, analysis of basic structures and structural components, friction, centroids, and moments of inertia. Prerequisites: MAT 270; PHY 111, 113.

CON 243 Heavy Construction Equipment, Methods, and Materials. (3)
fall and spring
Emphasis on “Horizontal” construction. Fleet operations, maintenance programs, methods, and procedures to construct tunnels, roads, dams, and the excavation of buildings. Lab, field trips.

CON 251 Microcomputer Applications for Construction. (3)
fall and spring
Applications of the microcomputer as a problem-solving tool for the constructor. Use of spreadsheets, information management, and multimedia software. Prerequisite: ECE 100.

CON 252 Building Construction Methods, Materials, and Equipment. (3)
fall and spring
Emphasis on “Vertical” construction. Methods, materials, codes, and equipment used in building construction corresponding to the 16 division “Master Format.” Lecture, lab.

CON 273 Electrical Construction Fundamentals. (3)
fall and spring
Circuits and machinery. Power transmission and distribution, with emphasis on secondary distribution systems. Measurements and instrumentation. Lecture, field trips. Prerequisites: PHY 112, 114.

CON 296 Field Internship. (0)
summer
Students participate as interns on construction projects to observe and experience the daily activities. Internship.

CON 310 Testing of Materials for Construction. (3)
fall and spring
Structural and behavioral characteristics, engineering properties, measurements, and application of construction materials. Not open to engineering students. Lecture, lab. Prerequisite: CON 323.

CON 322 Strength of Materials. (3)
fall and spring
Analysis of strength and rigidity of structural members in resisting applied forces. Stress, strain, shear, moment, deflections, combined stresses, connections, and moment distribution. Both U.S. and SI units of measurement. Prerequisite: CON 221.

CON 341 Surveying. (3)
fall and spring
Theory and field work in construction and land surveys. Lecture, lab. Prerequisite: MAT 170.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
CON 344 Route Surveying. (3)
spring

Simple, compound, and transition curves, including reconnaissance, preliminary, and location surveys. Calculation of earthwork. Dimensional control for construction projects. Lecture, lab. Prerequisites: CON 243, 341.

CON 345 Mechanical Systems. (3)
fall and spring

Design parameters and equipment related to heating and cooling systems for mechanical construction. Computer-aided calculations. Lecture, field trips. Prerequisites: CON 252; PHY 111, 113.

CON 371 Construction Management and Safety. (3)
fall and spring

Organization and management theory applied to the construction process. Leadership functions. Safety procedures and equipment. OSHA requirements for construction. Prerequisite: CON 252.

CON 377 Residential Construction Production Procedures. (3)
spring

Process used in residential construction. How a house is built: design, permits, scheduling, codes, contracting, site management, mechanical/electrical. Prerequisite: CON 252.

CON 383 Construction Estimating. (3)
fall and spring

Drawings and specifications. Methods and techniques used in construction estimating procedures. Introduction to computer software used in industry. Lecture, project workshops. Prerequisites: a combination of CON 243 and 251 and 252 or only instructor approval.

CON 389 Construction Cost Accounting and Control. (3)
fall and spring

General Studies: CS

CON 424 Structural Design. (3)
fall

Economic use of concrete, steel, and wood in building and engineered structures. Design of beams, columns, concrete formwork, and connections. Lecture, field trips. Prerequisite: CEE 310.

CON 450 Soil Mechanics in Construction. (3)
fall and spring

Soil mechanics as applied to the construction field, including foundations, highways, retaining walls, and slope stability. Relationship between soil characteristics and geologic formations. Not open to engineering students. Lecture, lab. Prerequisite: CON 323.

CON 453 Construction Labor Management. (3)
fall and spring

Labor and management history, union, and open shop organization of building and construction workers; applicable laws and government regulations; goals, economic power, jurisdictional disputes, and grievance procedures. Lecture, lab. Prerequisites: CON 371; ECN 112.

CON 455 Construction Project Management. (3)
fall and spring

Study of methods for coordinating people, equipment, materials, money, and schedule to complete a project on time and within approved cost. Lecture, class projects. Prerequisite: CON 371. Pre- or corequisite: CON 495.

CON 463 Foundations. (3)
spring

Subsurface construction theory and practice for description, excavations, exploration, foundations, pavements, and slopes. Evaluation of specifications and plans of work. Lecture, recitation, field trips. Prerequisites: CEE 450; CON 424.

CON 468 Mechanical and Electrical Estimating. (3)
fall

Analysis and organization of performing a cost estimate for both mechanical and electrical construction projects. Computer usage. Prerequisites: a combination of CON 273 and 345 and 383 or only instructor approval.

CON 471 Mechanical and Electrical Project Management. (3)
spring

Specialty contracts and agreements, scheduling, material handling, labor unit analysis, and job costing for mechanical and electrical construction. Prerequisite: CON 371.

CON 472 Development Feasibility Reports. (3)
fall and spring

Integration of economic location theory, development cost data, market research data, and financial analysis into a feasibility report. Computer orientation. Prerequisite: REA 380.

General Studies: L

CON 477 Residential Construction Business Practices. (3)
fall

Topics addressed include development, marketing, financing, legal issues, and sales. Prerequisite: CON 377 or instructor approval.

CON 483 Advanced Building Estimating. (3)
fall and spring

Concepts of pricing and markup, development of historic costs, life cycle costing, change order and conceptual estimating, and emphasizing microcomputer methods. Prerequisite: CON 383.

CON 484 Internship. (1–12)
not regularly offered

CON 486 Heavy Construction Estimating. (3)
fall

Methods analysis and cost estimation for construction of highways, bridges, tunnels, dams, and other engineering works. Lecture, field trips. Prerequisites: CON 344, 383.

CON 494 Special Topics. (1–4)
fall and spring

Possible topics:
(a) Cleanroom Construction. (3)

CON 495 Construction Planning and Scheduling. (3)
fall and spring

Various network methods of project scheduling, such as AOA, AON, Pert, bar-charting, line-of-balance, and VPM techniques. Microcomputers used for scheduling, resource allocation, and time/cost analysis. Lecture, lab. Prerequisites: CON 383; STP 226. Pre- or corequisite: CON 389.

General Studies: CS

CON 496 Construction Contract Administration. (3)
fall and spring

Surveys administrative procedures of general and subcontractors. Studies documentation, claims, arbitration, litigation, bonding, insurance, and indemnification. Discusses ethical practices. Lecture, field trips. Prerequisites: CON 225 or ECE 300; senior standing.

General Studies: L

CON 533 Strategies of Estimating and Bidding. (3)
fall

Explores advanced concepts of the estimating process, such as modeling and statistical analysis, to improve bid accuracies. Prerequisite: CON 483 or 486 or instructor approval.

CON 540 Construction Productivity. (3)
fall

Productivity concepts. Data collection. Analysis of productivity data and factors affecting productivity. Means for improving production and study of productivity improvement programs. Pre- or corequisite: CON 495.

CON 543 Construction Equipment Engineering. (3)
spring

Analysis of heavy construction equipment productivity using case studies. Applies engineering fundamentals to the planning, selection, and utilization of equipment. Lecture, case studies.

CON 545 Construction Project Management. (3)
spring

Theory and practice of construction project management. Roles of designer, owner, general contractor, and construction manager. Lecture, field trips. Pre- or corequisite: CON 495.

CON 547 Strategic Planning. (3)
fall

Business planning process of the construction enterprise. Differences between publicly held and closely held businesses and their exposure.

CON 561 International Construction. (3)
spring

Investigation of the cultural, social, economic, political, and management issues related to construction in foreign countries and remote regions.

CON 565 Performance-Based Systems. (3)
fall

Identifying the multicriteria methodology in the procurement of facilities contractual work. Prerequisite: instructor approval.
CON 567 Advanced Procurement Systems. (3)
Spring
Development of multicriteria decision procurement model for selecting the performing contractor. Prerequisite: instructor approval.

CON 570 Cleanroom Construction I. (3)
Fall
Design issues for cleanroom facilities; the construction’s viewpoint including planning, structures, mechanical, and tool installation. Lecture, site visits. Prerequisite: instructor approval.

CON 571 Cleanroom Construction II. (3)
Spring
Construction issues for cleanroom facilities including scheduling, cost estimating, project management, mechanical, safety certification, and tool hook-up. Lecture, site visits. Prerequisite: CON 570 or instructor approval.

CON 575 Information Technology in Construction. (3)
Spring
Use of information technology in the construction enterprise for improved communications, process modeling, and decision making. Prerequisite: instructor approval.

CON 589 Construction Company Financial Control. (3)
Fall

School of Engineering
Daniel F. Jankowski
Director
(ECG 104) 480/965-1726

PURPOSE
A large percentage of all engineering degree holders are found in leadership positions in a wide variety of industrial settings. Although an education in engineering is generally considered to be one of the best technical educations, it also provides an opportunity for the development of many additional attributes, including ethical and professional characteristics. In this era of rapid technological change, an engineering education serves society well as a truly liberal education. Society’s needs in the decades ahead call for engineering contributions on a scale not previously experienced. The well-being of civilization as we know it may depend upon how effectively this resource is developed.

Students studying engineering at ASU are expected to acquire a thorough understanding of the fundamentals of mathematics and the sciences and their applications to the solution of problems in the various engineering fields. The program is designed to develop a balance between science and engineering and an understanding of the economic and social consequences of engineering activity. The goals include the promotion of the general welfare of the engineering profession.

The courses offered are designed to meet the needs of the following students:
1. those who wish to pursue a career in engineering;
2. those who wish to do graduate work in engineering;
3. those who wish to have one or two years of training in mathematics, applied science, and engineering in preparation for some other technical career;
4. those who desire reengineering for the purpose of deciding which program to undertake or those who desire to transfer to another college or university; and
5. those who wish to take certain electives in engineering while pursuing another program in the university.

ADMISSION
For information regarding requirements for admission, transfer, retention, disqualification, and reinstatement, see “Undergraduate Admission,” page 54; “Admission,” page 201; “College Degree Requirements,” page 203; and “Academic Standards,” page 204.

Individuals who are beginning their initial college work in the School of Engineering should have completed certain secondary school units in addition to the minimum university admission requirements. Four units are required in mathematics; a course with trigonometry should be included. The laboratory sciences chosen must include at least one unit in physics and one unit in chemistry. Calculus, biology, and computer programming are also recommended. Students who do not meet the college’s subject matter requirements may be required to complete additional university course work that may not apply toward an engineering degree. One or more of the courses—CHM 113 General Chemistry, CSE 181 Applied Problem Solving with Visual BASIC, MAT 170 Precalculus, and PHY 105 Basic Physics—may be required to satisfy omissions or deficiencies upon admission.

DEGREES
The Bachelor of Science in Engineering (B.S.E.) degree consists of three parts:
1. university requirements (e.g., General Studies, First-Year Composition);
2. an engineering core; and
3. a major.

The courses identified for each of these parts are intended to meet requirements imposed by the university and by the professional accrediting agency, Accreditation Board for Engineering and Technology, Inc. (ABET), for programs in engineering.

The B.S. degree in Computer Science consists of two parts: (1) university requirements (e.g., General Studies, First-Year Composition); and (2) a major.

The courses identified for each of these parts are intended to meet requirements imposed by the university and by the professional accrediting agency, the Computer Science Accreditation Board (CSAB), for programs in computing science.

In addition to First-Year Composition, the university requires, through the General Studies requirement, courses in literacy and critical inquiry, humanities and fine arts, social and behavioral sciences, mathematical studies, and

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
natural sciences (see “General Studies,” page 78). There are also requirements for historical awareness, global awareness, and cultural diversity in the United States. ABET and CSAB impose additional requirements, particularly in mathematics and the basic sciences and in the courses for the major.

The engineering core is an organized body of knowledge that serves as a foundation to engineering and to specialized studies in a particular engineering major.

The courses included in the engineering core are taught in such a manner that they serve as basic background material (1) for all engineering students who will be taking subsequent work in the same and related subject areas; and (2) for those students who may not desire to pursue additional studies in a particular subject area. Thus, subjects within the engineering core are taught with an integrity and quality appropriately relevant to the particular discipline but always with an attitude and concern for both engineering in general and for the particular major(s).

The majors available are of two types: (1) those associated with a particular department within the School of Engineering (for example, Electrical Engineering and Civil Engineering) and (2) those offered as concentrations in Engineering Special Studies (for example, premedical engineering). With the exception of the Computer Science major, all curricula are extensions beyond the engineering core and cover a wide variety of subject areas within each field. Some of the credits in the major are reserved for the student’s use as an area of study. These credits are traditionally referred to as technical electives.

Majors and areas of study are offered by the seven departments:

Bioengineering
Chemical and Materials Engineering
Civil and Environmental Engineering
Computer Science and Engineering
Electrical Engineering
Industrial Engineering
Mechanical and Aerospace Engineering

The major in Engineering Special Studies is administered by the Office of the Dean. Engineering Special Studies makes use of the general structure of the engineering curricula noted above and provides students with an opportunity for study in engineering concentrations not available in the traditional engineering curricula at ASU.

The first two years of study are concerned primarily with general education requirements, English proficiency, and the engineering core. The final two years of study are concerned with the engineering core and the major, with a considerable part of the time being spent on the major.

The semester-by-semester selection of courses may vary from one field to another, particularly at the upper-division level, and is determined by the student in consultation with a faculty advisor. An example of a typical full-time freshman-year schedule is shown below; depending on a particular student’s circumstances, many other examples are possible.

Typical Freshman Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 114</td>
<td>General Chemistry for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ECE 100</td>
<td>Introduction to Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>ECN 111</td>
<td>Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>or ECN 112 Macroeconomic Principles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENG 101</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENG 102</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 270</td>
<td>Calculus with Analytic Geometry I MA</td>
<td>4</td>
</tr>
<tr>
<td>MAT 271</td>
<td>Calculus with Analytic Geometry II MA</td>
<td>4</td>
</tr>
<tr>
<td>PHY 121</td>
<td>University Physics I: Mechanics SQ*</td>
<td>3</td>
</tr>
<tr>
<td>PHY 122</td>
<td>University Physics Laboratory I SQ*</td>
<td>1</td>
</tr>
<tr>
<td>HU/SB and awareness area course</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

| Total | | 32 |

* Both PHY 121 and 122 must be taken to secure SQ credit.

Well-prepared students who have no outside commitments can usually complete the program of study leading to an undergraduate degree in engineering in four years (eight semesters at 16 semester hours per semester). Many students, however, find it advantageous or necessary to devote more than four years to the undergraduate program by pursuing, in any semester, fewer studies than are regularly prescribed. Where omissions or deficiencies exist—e.g., in chemistry, computer programming, English, mathematics, and physics—the student must complete more than the minimum of 128 semester hours. Therefore, in cases of inadequate secondary preparation, poor health, or financial necessity requiring considerable time for outside work, the undergraduate program is extended beyond four years.

DEGREE REQUIREMENTS

The degree programs in engineering at ASU are intended to develop habits of quantitative thought having equal utility for both the practice of engineering and other professional fields. In response to the opportunities provided by changing technology, educational research, and industrial input, possible improvements of various aspects of these programs are routinely considered. It is the intent of the faculty that all students be appropriately prepared in the four areas described below.

1. **Oral and written English.** Communication skills are an essential component of an engineering education. All engineering students must complete the university First-Year Composition requirement (see “University Graduation Requirements,” page 74), and the literacy and critical inquiry component (see “Five Core Areas,” page 78) of the General Studies requirement, which involves two courses beyond First-Year Composition.

2. **Selected nonengineering topics.** This area ensures that the engineering student acquires a satisfactory level of basic knowledge in the humanities and fine arts, social and behavioral sciences, mathematical studies, and the natural sciences. Courses in these subjects give engineers an increased awareness of their social responsibilities, provide an understanding of related factors in the decision-making process, and also provide a foundation for the study of engineering. Required courses go toward fulfilling the General Studies requirement. Additional courses in mathematics and the basic sciences are selected to meet ABET requirements.

 Because of accreditation requirements, aerospace studies (AES) and military science (MIS) courses are not acceptable for engineering degree credit in fulfilling the humanities and fine arts and social and
behavioral science portions of the General Studies requirement.

3. Selected engineering topics. This area involves courses in engineering science and engineering design. The courses further develop the foundation for the study of engineering and provide a base for specialized studies in a particular engineering discipline. The specific courses are included in the engineering core and in the major. While some departmental choices are allowed, all students are required to take ECE 100 Introduction to Engineering Design and ECE 300 Intermediate Engineering Design as part of the engineering core. These courses, together with other experiences in the engineering core and in the major, serve to integrate the study of design, the “process of devising a system, component, or process to meet desired needs” (ABET), throughout the engineering curricula.

4. Specific engineering discipline. This area provides a depth of understanding of a more definitive body of knowledge that is appropriate for a specific engineering discipline. Courses build upon the background provided by the earlier completed portions of the curriculum and include a major design experience as well as technical electives that may be selected by the student with the assistance of an advisor. The catalog material for the individual engineering majors describes specific departmental requirements.

COURSE REQUIREMENTS

A summary of the degree requirements is as follows:

First-Year Composition ... 6
General Studies/school requirements ... 57
Engineering core .. 15–19
Major (including area of study or concentration)* 46–50

Minimum total ... 128

* The requirements for each of the majors offered are described on the following pages.

The specific course requirements for the B.S. and B.S.E. degrees follow.

First-Year Composition
Choose among the course combinations below 6
ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)
ENG 105 Advanced First-Year Composition (3)
Elective chosen with an advisor (3)
ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)

Total ... 6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
ECN 111 Macroeconomic Principles SB 3
or ECN 112 Microeconomic Principles SB (3)

HU courses ... 6 or 9
SB course(s) .. 6 or 3

Total .. 15

Literacy and Critical Inquiry
ECE 300 Intermediate Engineering Design L 3
ECE 400 Engineering Communications L 3
or approved department L course (3)

Total .. 6

Mathematical Studies
ECE 100 Introduction to Engineering Design CS 4
MAT 270 Calculus with Analytic Geometry I MA 4
MAT 271 Calculus with Analytic Geometry II MA 4
MAT 272 Calculus with Analytic Geometry III MA 4
MAT 274 Elementary Differential Equations MA 3
Department mathematics elective .. 2

Total ... 21

Natural Sciences/Basic Sciences
CHM 114 General Chemistry for Engineers SQ 4
or CHM 116 General Chemistry SQ (4)
PHY 121 University Physics I: Mechanics SQ 3
PHY 122 University Physics Laboratory I SQ 1
PHY 131 University Physics II: Electricity and Magnetism SQ 3
PHY 132 University Physics Laboratory II SQ 1
Department basic science elective .. 3

Total ... 15
General Studies/school requirements total 57

1 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU or SB requirements.
2 Both PHY 121 and 122 must be taken to secure SQ credit.
3 Both PHY 131 and 132 must be taken to secure SQ credit.

Engineering Core Requirement

A minimum of five of the following eight courses are required. Courses selected are subject to departmental approval. See department requirements.

ECE 201 Electrical Networks I ... 4
ECE 210 Engineering Mechanics I: Statics 3
ECE 212 Engineering Mechanics II: Dynamics 3
ECE 313 Introduction to Deformable Solids 3
ECE 334 Electronic Devices and Instrumentation 4
ECE 340 Thermodynamics 1 .. 3
or MSE 430 Thermodynamics of Materials (3)
ECE 350 Structure and Properties of Materials 2 3
or ECE 351 Civil Engineering Materials (3)
or ECE 352 Properties of Electronic Materials (4)
Choose one microcomputer/microprocessor course below 3 or 4
BME 470 Microcomputer Applications in Bioengineering (4)
CHE 461 Process Control CS (4)
CSE 225 Assembly Language Programming and Microprocessors (Motorola) (4)
or EEE 225 Assembly Language Programming and Microprocessors (Motorola) (4)

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
CSE 226 Assembly Language Programming and Microprocessors (Intel) (4)
or ECE 226 Assembly Language Programming and Microprocessors (Intel) (4)
IEE 463 Computer-Aided Manufacturing and Control CS (3)

1 CHM 345 Physical Chemistry I (3) may be substituted for ECE 340.
2 CHM 346 Physical Chemistry II (3) may be substituted for ECE 350.

GRADUATION REQUIREMENTS
To qualify for graduation from the School of Engineering, a student must have a minimum cumulative GPA of 2.00 in addition to having a GPA of at least 2.00 for the courses in the major field.

PROFESSIONAL ACCREDITATION
The undergraduate programs in Aerospace Engineering, Bioengineering, Chemical Engineering, Civil Engineering, Computer Systems Engineering, Electrical Engineering, Industrial Engineering, Materials Science and Engineering, and Mechanical Engineering are accredited by the Engineering Accreditation Commission of ABET, Baltimore, Maryland, 410/347-7700. The B.S. program in Computer Science is accredited by the Computer Science Accreditation Commission of CSAB.

ANALYSIS AND SYSTEMS (ASE)
ASE 100 College Adjustment and Survival. (2)
fall and spring
Exploration of career goals and majors. Emphasis on organization and development of study skills, including time management, stress management, and use of the library.

ASE 194 Special Topics. (1–4)
fall
Possible topics:
(a) MEP Academic Success. (2)
(b) Introduction to Engineering Design I. (2)
(c) Introduction to Engineering Design II. (2)

ASE 399 Cooperative Work Experience. (1)
fall, spring, summer
Work periods with industrial firms or government agencies alternated with full-time course work. Not open to students from other colleges. May be repeated for credit. Prerequisites: 45 hours completed in major with 2.50 GPA; dean approval.

ASE 485 Engineering Statistics. (3)
fall, spring, summer
Designing statistical studies for solutions to engineering problems. Methods include regression, design and analysis of experiments, and other statistical topics. Prerequisite: ECE 380.

ASE 486 Partial Differential Equations in Engineering. (3)
spring
Development and solution of partial differential equations in engineering. Applications in solid mechanics, vibrations, and heat transfer. Prerequisites: ECE 386; MAT 242, 274.

ASE 582 Linear Algebra in Engineering. (3)
fall
Development and solution of systems of linear algebraic equations. Applications from mechanical, structural, and electrical fields of engineering. Prerequisite: MAT 242 (or its equivalent).

ASE 586 Project in Design and Development. (3)
fall, spring, summer
Individual project in creative design and synthesis. May be repeated for credit. Prerequisite: senior standing.

ASE 490 Project in Design and Development. (2–3)
fall, spring, summer
Individual project in creative design and synthesis. May be repeated for credit. Prerequisite: senior standing.

ASE 496 Professional Seminar. (0)
fall and spring
Topics of interest to students in the engineering special and interdisciplinary studies.

ASE 500 Research Methods: Engineering Statistics. (3)
fall, spring, summer
Designing statistical studies for solutions to engineering problems. Methods include regression, design and analysis of experiments, and other statistical topics. Prerequisite: ECE 380.

ASE 514 Linear Algebra in Engineering. (3)
fall
Development and solution of systems of linear algebraic equations. Applications from mechanical, structural, and electrical fields of engineering. Prerequisite: MAT 242 (or its equivalent).

ASE 586 Partial Differential Equations in Engineering. (3)
spring
Development and solution of partial differential equations in engineering. Applications in solid mechanics, vibrations, and heat transfer. Prerequisites: ECE 386; MAT 242, 274.

ENGINEERING CORE (ECE)
ECE 100 Introduction to Engineering Design. (4)
fall and spring
Introduction to engineering design: teaming; the profession of engineering; computer models in engineering; communication skills; quality and customer satisfaction. Prerequisites: high school computing and physics and algebra courses (or their equivalents).

ASE 194 Special Topics. (1–4)
fall and spring
Possible topics:
(a) Introduction to Engineering Design I. (2)
(b) Introduction to Engineering Design II. (2)

ECE 201 Electrical Networks I. (4)
fall, spring, summer
Introduction to electrical networks. Component models, transient, and steady-state analysis. Lecture, lab. Prerequisite: ECE 100 or 194 (ST: Introduction to Engineering Design I and ST: Introduction to Engineering Design II) or 294 (ST: Elements of Engineering Design). Pre- or corequisites: MAT 274; PHY 131, 132.

ECE 210 Engineering Mechanics I: Statics. (3)
fall, spring, summer
Force systems, resultsants, equilibrium, distributed forces, area moments, fluid statics, internal stresses, friction, energy criterion for equilibrium, and stability. Lecture, recitation. Prerequisites: ECE 100 or 194 (ST: Introduction to Engineering Design I and ST: Introduction to Engineering Design II) or 294 (ST: Elements of Engineering Design); MAT 271 (or 291); PHY 121, 122.

ECE 212 Engineering Mechanics II: Dynamics. (3)
fall, spring, summer
Kinematics and kinetics of particles, translating and rotating coordinate systems, rigid body kinematics, dynamics of systems of particles and rigid bodies, and energy and momentum principles. Lecture, recitation. Prerequisites: ECE 210; MAT 274.

ECE 214 Engineering Mechanics. (4)
fall, spring, summer
Force systems, resultsants, moments and equilibrium. Kinematics and kinetics of particles, systems of particles and rigid bodies. Energy and momentum principles. Lecture, recitation. Prerequisites: ECE 100 or 194 (ST: Introduction to Engineering Design I and ST: Introduction to Engineering Design II) or 294 (ST: Elements of Engineering Design); MAT 274; PHY 121, 122.

ECE 294 Special Topics. (1–4)
not regularly offered
Possible topics:
(a) Elements of Engineering Design

ECE 300 Intermediate Engineering Design. (3)
fall, spring, summer
Engineering design process concentrating on increasing the student’s ability to prepare well-written technical communication and to define problems and generate and evaluate ideas. Teaming skills enhanced. Prerequisites: ECE 100 or 194 (ST: Introduction to Engineering Design I and ST: Introduction to Engineering Design II) or 294 (ST: Elements of Engineering Design); ENG 102 (or 105 or 108); at least two other engineering core courses.

ECE 313 Introduction to Deformable Solids. (3)
fall, spring, summer
Equilibrium, strain-displacement relations, and stress-strain-temperature relations. Applications to force transmission and deformations in axial, torsional, and bending of bars. Combined loadings. Lecture, recitation. Prerequisites: ECE 210 (or 214); MAT 274.
ECE 334 Electronic Devices and Instrumentation. (4)
fall, spring, summer
Applies electric network theory to semiconductor circuits. Diodes/transistors/amplifiers/opamps/digital logic gates, and electronic instruments. Lecture, lab. Prerequisite: ECE 201.

ECE 340 Thermodynamics. (3)
fall, spring, summer
Work, heat, and energy transformations and relationships between properties; laws, concepts, and modes of analysis common to all applications of thermodynamics in engineering. Lecture, recitation. Prerequisites: CHM 114 (or 116); ECE 210 (or 214); PHY 131, 132. Pre- or corequisite: MAT 274.

ECE 350 Structure and Properties of Materials. (3)
fall, spring, summer
Basic concepts of material structure and its relation to properties. Application to engineering problems. Prerequisites: CHM 114 (or 116); PHY 121, 122.

ECE 351 Civil Engineering Materials. (3)
fall and spring
Structure and behavior of civil engineering materials. Laboratory investigations and test criteria. Lecture, lab. Prerequisite: ECE 313.

ECE 352 Properties of Electronic Materials. (4)
fall, spring, summer
Schrödinger’s wave equation, potential barrier problems, bonds of crystals, the band theory of solids, semiconductors, superconductor dielectric, and magnetic properties. Prerequisites: CHM 114 (or 116); MAT 274; PHY 241.

ECE 380 Probability and Statistics for Engineering Problem Solving. (3)
fall and spring
Applications-oriented course with computer-based experience using statistical software for formulating and solving engineering problems. 2 hours lecture, 2 hours lab. Prerequisite: MAT 271.
General Studies: CS

ECE 384 Numerical Methods for Engineers. (4)
fall and spring
Numerical methods and computational tools for selected problems in engineering. Prerequisites: ECE 100 or 194 (ST: Introduction to Engineering Design I and ST: Introduction to Engineering Design II) or 294 (ST: Elements of Engineering Design); MAT 274; at least two other engineering core courses. Pre- or corequisite: MAT 272.

ECE 394 Special Topics. (1–4)
fall and spring
Possible topics:
(a) Conservation Principles. (4)
(b) Engineering Systems. (4)
(c) Introduction to Manufacturing Engineering. (3)
(d) Properties that Matter. (4)

ECE 400 Engineering Communications. (3)
fall, spring, summer
Planning and preparing engineering publications and oral presentations, based on directed library research related to current engineering topics. Prerequisites: ENG 102 (or 105 or 108); completion of General Studies L requirement (or ECE 300); senior standing in an engineering major.
General Studies: L

STE 208 Patterns in Nature. (4)
fall and spring
Project-oriented science course with computer training to develop critical thinking and technical skills for student-oriented science lessons K–12. Lecture, lab. Cross-listed as PHS 208. Credit is allowed for only PHS 208 or STE 208. Prerequisite: college-level science course or instructor approval.
General Studies: SQ

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
ability to make measurements on and interpret data from living systems, addressing the problems associated with the interaction between living and nonliving materials and systems. Students are able to design systems, devices, components, processes, and experiments with an understanding of manufacturing processes to meet real-world needs for solutions to problems in the biomedical device industries, medicine, and the life sciences. Students are able to communicate effectively as bioengineers in oral, written, computer-based, and graphical forms. Faculty seek to instill students with a sense of commitment to professionalism and ethical responsibility as bioengineers. Students are given opportunities to interact with and gain real-world experience with local and national medical device and technology industries, health-care organizations, educational institutions, and constituent populations. Faculty seek to develop within students an understanding of and positive approach toward continued lifelong learning of new technologies and relevant issues in the discipline of bioengineering.

Graduate degree programs in Bioengineering are offered at ASU at the master’s and doctoral levels. For more information, consult the Graduate Catalog.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Bioengineering. A minimum of 50 upper-division semester hours is required. Students must attain a GPA of at least 2.00 for the courses in the major field.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, students must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

COURSE REQUIREMENTS

The course work, in semester hours, for the undergraduate degree can be classified into the following categories:

First-Year Composition
Choose among the course combinations below...............6
ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)
ENG 105 Advanced First-Year Composition (3)
Elective chosen with an advisor (3)

ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)

Total ... 6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
ECN 111 Macroeconomic Principles SB3
or ECN 112 Microeconomic Principles SB (3)
HU/SB and awareness area courses12
Total ... 15

Literacy and Critical Inquiry
BME 413 Biomedical Instrumentation L3
BME 423 Biomedical Instrumentation Laboratory L1
ECE 300 Intermediate Engineering Design L3

Total .. 7

Natural Sciences/Basic Sciences
CHM 113 General Chemistry SQ4
CHM 116 General Chemistry SQ4
PHY 121 University Physics I: Mechanics SQ^13
PHY 122 University Physics Laboratory I SQ^11
PHY 131 University Physics II: Electricity and Magnetism SQ^23
PHY 132 University Physics Laboratory II SQ^21

Total ... 16

Mathematical Studies
ECE 100 Introduction to Engineering Design CS4
MAT 242 Elementary Linear Algebra2
MAT 270 Calculus with Analytic Geometry I MA4
MAT 271 Calculus with Analytic Geometry II MA4
MAT 272 Calculus with Analytic Geometry III MA4
MAT 274 Elementary Differential Equations MA3

Total ... 21

Engineering Core
ECE 201 Electrical Networks I4
ECE 210 Engineering Mechanics I: Statics3
ECE 334 Electronic Devices and Instrumentation4
ECE 340 Thermodynamics ...3
ECE 350 Structure and Properties of Materials3

Total ... 17

Major
BIO 181 General Biology SQ ..4
BME 201 Introduction to Bioengineering L3
BME 318 Biomaterials ...3
BME 334 Biomedical Engineering Transport I: Fluids3
BME 348 Bioengineering Heat and Mass Transfer3
BME 416 Biomechanics ..3
BME 417 Biomedical Engineering Capstone Design I3
BME 435 Physiology for Engineers4
BME 470 Microcomputer Applications in Bioengineering4
BME 490 Biomedical Engineering Capstone Design II3
ECE 380 Probability and Statistics for Engineering Problem Solving CS3

Technical electives ...10

Minimum total .. 46

^1 Both PHY 121 and 122 must be taken to secure SQ credit.
^2 Both PHY 131 and 132 must be taken to secure SQ credit.

The major BME courses require a grade of “C” or higher to advance in the program and to receive a baccalaureate degree.

Bioengineering Areas of Study

Students interested in a career in bioengineering may elect to emphasize biochemical engineering, bioelectric engineering, biomaterials engineering, biomechanical engineering, biomedical imaging engineering, biosystems engineering, molecular and cellular bioengineering, or premedical engineering in their studies.

Biochemical Engineering. This area is designed to strengthen the student’s knowledge of chemistry and transport phenomena and is particularly well suited for students interested in biotechnology. Technical electives must include CHM 331 and 332 and BCH 361.

Bioelectric Engineering. This area is designed to strengthen the student’s knowledge of electrical systems, electronics, and signal processing. Students considering a
career in bioelectric phenomena, biocontrol systems, medical instrumentation, noninvasive imaging, neural engineering, and electrophysiology should consider this area of study.

 Technical electives must include the following:

BME 350 Signals and Systems for Bioengineers .. 3
or EEE 303 Signals and Systems (3)
BME 419 Biocontrol Systems ... 3
EEE 302 Electrical Networks II ... 3
Total .. 9

Biomaterials Engineering. This area integrates the student’s knowledge of materials science and engineering with biomaterials science and engineering concepts for the design of materials intended to be used for the development of medical and diagnostic devices. It emphasizes structure-property relationships of engineering materials (metals, polymers, ceramics, and composites) and biological materials, biomaterial-host response phenomena, technical and regulatory aspects of biomaterials testing and evaluation. Students interested in careers in the biomaterials, medical device, or biotechnology industries should consider this area of study.

 Technical electives must include the following:

MSE 353 Introduction to Materials Processing and Synthesis .. 3
MSE 355 Introduction to Materials Science and Engineering .. 3
MSE 470 Polymers and Composites ... 3
or MSE 471 Introduction to Ceramics .. 3
Total .. 9

Biomechanical Engineering. This area is designed to strengthen the student’s knowledge of mechanics and control theory. Students interested in careers related to biomechanical design, orthotic/prosthetic devices, rehabilitation engineering, and orthopedic implants should consider this area of study. It also provides the fundamentals for the study of neuromuscular control and the study of human motion. From the requirements given under “General Studies/School Requirements,” page 213, either ECE 384 Numerical Analysis for Engineers I (2) or MAT 242 Elementary Linear Algebra (2) must be taken as the department mathematics elective.

 Technical electives must include the following:

BME 350 Signals and Systems for Bioengineers .. 3
or BME 419 Biocontrol Systems (3)
or EEE 303 Signals and Systems (3)
ECE 212 Engineering Mechanics II: Dynamics .. 3
ECE 313 Introduction to Deformable Solids ... 3
Total .. 9

Biomedical Imaging Engineering. This area is designed to strengthen the student’s knowledge of radiation interactions, health physics, medical diagnostic imaging (MRI, PET, X-ray, CT), radiation protection, and nuclear instrumentation. Students considering careers in medical engineering or health physics should consider this area of study.

 Technical electives must include the following:

PHY 361 Introductory Modern Physics .. 3
Department-approved electives .. 6
Total .. 9

Biosystems Engineering. This area is designed to strengthen the background of students interested in physiological systems modeling and analysis and design and evaluation of artificial organs and medical devices. Analyzing physiological systems and designing artificial organs require knowledge in integrating electrical, mechanical, transport, and thermofluid systems. Students considering careers in medical device industries, clinical engineering, or artificial organs should consider this area of study.

 Technical electives must include the following:

BME 350 Signals and Systems for Bioengineers .. 3
or BME 419 Biocontrol Systems (3)
BME 411 Biomedical Engineering I ... 3
or BME 412 Biomedical Engineering II (3)
BME 415 Biomedical Transport Processes .. 3
Total .. 9

Molecular and Cellular Bioengineering. This area is designed to strengthen and integrate the student’s knowledge of molecular and cellular biology, biochemistry, and biomaterials science and engineering for the design of biomolecular and cellular-based hybrid medical and diagnostic devices. It is particularly suited for students interested in pursuing graduate studies in molecular and cellular bioengineering and health-related biotechnology.

 Technical electives must include the following:

BCH 361 Principles of Biochemistry .. 3
BIO 353 Cell Biology ... 3
CHM 331 General Organic Chemistry .. 3
Total .. 9

Premedical Engineering. This area is designed to meet the needs of students desiring entry into a medical, dental, or veterinary school. The course sequence provides an excellent background for advanced study leading to a career in research in the medical or life sciences.

 Technical electives must include the following:

CHM 331 General Organic Chemistry ... 3
CHM 332 General Organic Chemistry .. 3
CHM 335 General Organic Chemistry Laboratory ... 1
CHM 336 General Organic Chemistry Laboratory ... 1
Total .. 8

To fulfill medical school admission requirements, BIO 182 General Biology is also required in addition to the degree requirements.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
Bioengineering Program of Study

Typical Four-Year Sequence

First Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 113</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ECE 100</td>
<td>Introduction to Engineering Design</td>
<td>4</td>
</tr>
<tr>
<td>ENG 101</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 270</td>
<td>Calculus with Analytic Geometry I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 121</td>
<td>University Physics I: Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 122</td>
<td>University Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHM 116</td>
<td>General Chemistry</td>
<td>4</td>
</tr>
<tr>
<td>ENG 102</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 271</td>
<td>Calculus with Analytic Geometry II</td>
<td>4</td>
</tr>
<tr>
<td>PHY 121</td>
<td>University Physics II: Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHY 132</td>
<td>University Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 331</td>
<td>Biomedical Engineering Transport I: Fluids</td>
<td>3</td>
</tr>
<tr>
<td>BME 435</td>
<td>Physiology for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>ECE 300</td>
<td>Intermediate Engineering Design L</td>
<td>3</td>
</tr>
<tr>
<td>ECE 340</td>
<td>Thermodynamics</td>
<td>3</td>
</tr>
<tr>
<td>ECN 111</td>
<td>Macroeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>or ECN 112</td>
<td>Microeconomic Principles</td>
<td>3</td>
</tr>
<tr>
<td>MAT 242</td>
<td>Elementary Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 413</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 416</td>
<td>Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 417</td>
<td>Biomedical Engineering Capstone Design I</td>
<td>3</td>
</tr>
<tr>
<td>BME 423</td>
<td>Biomedical Instrumentation Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>
| HU/SB and awareness area course | 3
| Technical elective(s) | | 4 |
| Total | | 16 |

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 413</td>
<td>Biomedical Instrumentation</td>
<td>3</td>
</tr>
<tr>
<td>BME 416</td>
<td>Biomechanics</td>
<td>3</td>
</tr>
<tr>
<td>BME 417</td>
<td>Biomedical Engineering Capstone Design I</td>
<td>3</td>
</tr>
<tr>
<td>BME 423</td>
<td>Biomedical Instrumentation Laboratory</td>
<td>1</td>
</tr>
</tbody>
</table>
| HU/SB and awareness area course | 3
| Technical elective(s) | | 4 |
| Total | | 17 |

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BME 470</td>
<td>Microcomputer Applications in Bioengineering</td>
<td>4</td>
</tr>
<tr>
<td>BME 490</td>
<td>Biomedical Engineering Capstone Design II</td>
<td>3</td>
</tr>
<tr>
<td>Technical elective(s)</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>Degree requirements</td>
<td></td>
<td>128</td>
</tr>
</tbody>
</table>

Notes:
1. Both PHY 121 and 122 must be taken to secure SQ credit.
2. Both PHY 131 and 132 must be taken to secure SQ credit.
3. Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU and SB requirements.

BIOENGINEERING (BME)

BME 201 Introduction to Bioengineering. (3)

Fall and spring

Impact of bioengineering on society. Develops an awareness of the contributions of bioengineering to solve medical and biological problems. Prerequisite: ENG 101 or 102 or 105 or 108.

General Studies: L

BME 202 Global Awareness Within Biomedical Engineering Design. (3)

Not regularly offered

Introduction to ethical, legal, social, economic, and technical issues arising from the design and implementation of bioengineering technology. Lecture, critical discourse. Prerequisites: ECE 100; ECN 111 (or 112); ENG 101 (or 105); 102.

General Studies: L/HU

BME 318 Biomaterials. (3)

Fall

Material properties of natural and artificial biomaterials. Tissue and blood biocompatibility. Uses of materials to replace body parts. Prerequisite: ECE 350.

BME 331 Biomedical Engineering Transport: Fluids. (3)

Fall

Transport phenomena with emphasis on biomedical engineering fluid systems. Prerequisites: MAT 274; PHY 131.

BME 334 Bioengineering Heat and Mass Transfer. (3)

Spring

Application of the principles of heat and mass transfer phenomena to solution of problems in medicine and medical device design. Prerequisite: ECE 340. Prerequisite with a grade of “C” or higher: BME 331.

BME 350 Signals and Systems for Bioengineers. (3)

Spring

Application of principles of calculus and ordinary differential equations to modeling and analysis of responses, signals, and signal transfers in biosystems. Prerequisites: ECE 301; MAT 272, 274.

BME 411 Biomedical Engineering I. (3)

Once a year

Review of diagnostic and prosthetic methods using engineering methodology. Introduction to transport, metabolic, and autoregulatory processes in the human body. Prerequisite with a grade of “C” or higher: BME 334.

BME 412 Biomedical Engineering II. (3)

Once a year

Review of electrophysiology and nerve pacing applications, introduction to biomechanics and joint/limb replacement technology, cardiovascular and pulmonary fluid mechanics, and the application of mathematical modeling. Prerequisite: instructor approval.

BME 413 Biomedical Instrumentation. (3)

Fall

Principles of medical instrumentation. Studies of medical diagnostic instruments and techniques for the measurement of physiologic variables in living systems. Prerequisites: ECE 300, 334. Prerequisite with a grade of “C” or higher: BME 423.

General Studies: L

BME 415 Biomedical Transport Processes. (3)

Once a year

Principles of momentum, heat, and mass transport with applications to medical and biological systems and medical device design. Prerequisites: MAT 274; PHY 131.
BME 416 Biomechanics. (3)
fall
Mechanical properties of bone, muscle, and soft tissue. Static and dynamic analysis of human movement tasks such as locomotion. Prerequisite with a grade of "C" or higher: BME 318.

BME 417 Biomedical Engineering Capstone Design I. (3)
fall
Technical, regulatory, economic, legal, social, and ethical aspects of medical device systems engineering design. Lecture, field trips. Prerequisite: ECE 300. Prerequisite with a grade of "C" or higher: BME 318, 304.

BME 419 Biocontrol Systems. (3)
fall
Application of linear and nonlinear control systems techniques toward analysis of neuromusculoskeletal, cardiovascular, thermal, and mass transfer systems of the body. Prerequisites: ECE 301; MAT 274.

BME 423 Biomedical Instrumentation Laboratory. (1)
fall
Laboratory experience with problems, concepts, and techniques of biomedical instrumentation in static and dynamic environments. Lab. Prerequisites: ECE 300, 334. Prerequisite with a grade of "C" or higher: BME 435. Corequisite: BME 413. General Studies: L (if credit also earned in BME 413)

BME 435 Physiology for Engineers. (4)
fall
Physiology of the nervous, muscular, cardiovascular, endocrine, renal, and respiratory systems. Emphasizes use of quantitative methods in understanding physiological systems. Lecture, lab. Prerequisites: a combination BIO 181 and CHM 116 and PHY 131 or only instructor approval.

BME 470 Microcomputer Applications in Bioengineering. (4)
spring
Use of microcomputers for real-time data collection, analysis, and control of experiments involving actual and simulated physiological systems. Lecture, lab. Prerequisites: ECE 100, 334. Prerequisite with a grade of "C" or higher: BME 435.

BME 490 Biomedical Engineering Capstone Design II. (1–5)
spring
Individual projects in medical systems or medical device design and development. Lecture, lab. Prerequisite with a grade of "C" or higher: BME 417.

BME 496 Professional Seminar. (1–3)
fall and spring
Professional and ethical aspects with a discussion of responsibilities. Lecture, field trips. Prerequisite: instructor approval.

BME 511 Biomedical Engineering I. (3)
one a year
Diagnostic and prosthetic methods using engineering methodology. Transport, metabolic, and autoregulatory processes in the body.

BME 512 Biomedical Engineering II. (3)
one a year
Electrophysiology and nerve pacing applications, introduction to biomechanics and joint/limb replacement, technology, cardiovascular and pulmonary fluid mechanics, and mathematical modeling.

BME 513 Biomedical Instrumentation. (3)
fall
Principles of medical instrumentation. Studies of medical diagnostic instruments and techniques for the measurement of physiologic variables in living systems.

BME 514 Advanced Biomedical Instrumentation. (3)
not regularly offered
Principles of applied biophysical measurements using bioelectric and radiological approach. Prerequisites: ECE 334; MAT 274 (or its equivalent).

BME 515 Biomedical Transport Processes. (3)
not regularly offered
Principles of momentum, heat, and mass transport with applications to medical and biological systems and medical device design. Prerequisite: instructor approval.

BME 516 Topics in Biomechanics. (3)
fall
Mechanical properties of bone, muscle, and soft tissue. Static and dynamic analysis of human movement tasks, including in-depth project. Prerequisite: instructor approval.

BME 518 Introduction to Biomaterials. (3)
spring
Topics include structure property relationships for synthetic and natural biomaterials, biocompatibility, and uses of materials to replace body parts. Prerequisite: ECE 350 (or its equivalent) or instructor approval.

BME 519 Topics in Biocontrol Systems. (3)
fall
Linear and nonlinear control systems analysis of neuromusculoskeletal, cardiovascular, thermal, and mass transfer systems of the body, including in-depth project. Prerequisites: both ECE 301 and MAT 274 or only instructor approval.

BME 520 Bioelectric Phenomena. (3)
not regularly offered
Study of the origin, propagation, and interactions of bioelectricity in living things; volume conductor problem, mathematical analysis of bioelectric interactions, and uses in medical diagnostics.

BME 521 Neuromuscular Control Systems. (3)
spring
Overview of sensorimotor brain structures. Application of nonlinear, adaptive, optimal, and supervisory control theory to eye-head-hand coordination and locomotion.

BME 522 Biosensor Design and Application. (3)
once a year
Theory and principles of biosensor design and application in medicine and biology. Principles of measurements with biosensors. Prerequisite: instructor approval.

BME 523 Physiological Instrumentation Lab. (1)
fall
Laboratory experience with problems, concepts, and techniques of biomedical instrumentation in static and dynamic environments. Lab. Prerequisites: BME 435; ECE 334. Pre- or corequisite: BME 513.

BME 524 Fundamentals of Applied Neural Control. (3)
once a year
Fundamental concepts of electrical stimulation and recording in the nervous system with the goal of functional control restoration. Pre- or corequisite: BME 435 or instructor approval.

BME 525 Surgical Techniques. (2)
spring
Principles of surgical techniques, standard operative procedures, federal regulations, guidelines, and state-of-the-art methods. Lecture, lab.

BME 532 Prosthetic and Rehabilitation Engineering. (3)
one a year
Analysis and critical assessment of design and control strategies for state-of-the-art medical devices used in rehabilitation engineering. Pre- or corequisite: BME 416 or 516 or EPE 610.

BME 533 Transport Processes I. (3)
fall
Unified treatment of momentum, heat, and mass transfer from molecular theory, and continuum points of view. Continuum equations of microscopic and macroscopic systems and multiphase systems. Cross-listed as CHE 533. Credit is allowed for only BME 533 or CHE 533.

BME 534 Transport Processes II. (3)
spring
Continuation of BME 533 or CHE 533, emphasizing mass transfer. Cross-listed as CHE 534. Credit is allowed for only BME 534 or CHE 534. Prerequisite: BME 533 or CHE 533.

BME 543 Thermodynamics of Chemical Systems. (3)
fall
Classical and statistical thermodynamics of nonideal physicochemical systems and processes; prediction of optimum operating conditions. Cross-listed as CHE 543. Credit is allowed for only BME 543 or CHE 543.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
BME 544 Chemical Reactor Engineering. (3)
spring
Reaction rates, thermodynamics, and transport principles applied to the design and operation of chemical reactors. Cross-listed as CHE 544. Credit is allowed for only BME 544 or CHE 544. Prerequisite: BME 543 or CHE 543.

BME 551 Movement Biomechanics. (3)
spring
Mechanics applied to the analysis and modeling of physiological movements. Computational modeling of muscles, tendons, joints, and the skeletal system with application to sports and rehabilitation. Prerequisite: BME 416 or 516 or instructor approval.

BME 566 Medical Imaging Instrumentation. (3)
not regularly offered
Design and analysis of imaging systems and nuclear devices for medical diagnosis, therapy, and research. Laboratory experiments using diagnostic radiology, fluoroscopy, ultrasound, and CAT scanning. Lecture, lab. Prerequisite: instructor approval.

BME 568 Medical Imaging. (3)
not regularly offered
CT, SPECT, PET, and MRI. 3-dimensional in vivo measurements. Instrument design, physiological modeling, clinical protocols, reconstruction algorithms, and quantitation issues. Prerequisite: instructor approval.

Department of Chemical and Materials Engineering

Subhash Mahajan
Chair
(ECG 202) 480/965-3313
www.eas.asu.edu/~cbme

REGENTS’ PROFESSOR
MAYER

PROFESSORS
ADAMS, BERMAN, DEY, KRAUSE, MAHAJAN, NEWMAN, RAUPP, SATER

ASSOCIATE PROFESSORS
ALFORD, BEAUDOIN, BECKMAN, BURROWS, RIVERA, SIERSKS

ASSISTANT PROFESSORS
ALLEN, CHAWLA, DILLNER, RAZATOS

The faculty in the Department of Chemical and Materials Engineering offer the B.S.E. degree in Chemical Engineering and in Materials Science and Engineering. Each of these majors builds on a broad base of knowledge within the basic and mathematical sciences and the engineering core. Each offers excellent career opportunities.

Chemical engineers design and operate processes that may include chemical change. They combine the science of chemistry with the discipline of engineering in order to solve complex problems in a wide variety of industries. Challenging job opportunities exist not only in the chemical and petroleum industries, but also in the plastics, electronics, computer, metals, space, food, drug, and health care industries. In these industries, chemical engineers practice in a wide variety of occupations including environmental control, surface treatments, energy and materials transformation, biomedical applications, fermentation, protein recovery, extractive metallurgy, and separations. In the environmental area, chemical engineers develop methods to reduce the pollution created in manufacturing processes, devise techniques to recover usable materials from wastes, design waste storage and treatment facilities, and design pollution control strategies.

Materials science and engineering uses fundamental knowledge in chemistry and physics to correlate relationships between the structure and processing of materials and their properties. Students educated in this discipline decide how to optimize existing materials or how to develop new advanced materials and processing techniques. Students who major in materials science and engineering will find employment opportunities in a variety of industries and research facilities, which include aerospace, electronics, energy conversion, manufacturing, medical devices, semiconductors, and transportation.

CHEMICAL ENGINEERING—B.S.E.

Chemical engineers are generally concerned with transfer within and between liquid, gas, and solid phases and the chemical changes that may also occur. The engineers design and operate processes that accommodate such changes, including the chemical activation of materials. Typically this involves complex multicomponent systems wherein the interactions between species have to be considered and analyzed. The new challenge in chemical engineering is to apply the principles of fluid dynamics, mass transfer, solution thermodynamics, reaction kinetics, and separation techniques to technological endeavors such as pollution control within manufacturing and the environment, integrated circuit design, solid-state surface treatments, and materials processing.

Consequently, in addition to the chemical and petroleum industries, chemical engineers find challenging opportunities in the plastics, solid-state, electronics, computer, metals, space, food, drug, and health care industries, where they practice in a wide variety of occupations, such as environmental control, surface treatments, energy and materials transformations, biomedical applications, fermentation, protein recovery, extractive metallurgy, and separations. While a large percentage of the industrial positions are filled by graduates with bachelor’s degrees, there are lucrative and creative opportunities in research and development for those who acquire postgraduate education.

Subspecializations have developed within the profession. However, the same broad body of knowledge is generally expected of all chemical engineers for maximum flexibility in industrial positions. The preparation for chemical engineering is accomplished by a blend of classroom instruction and laboratory experience.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Chemical Engineering. A minimum of 50 upper-division semester hours is required. Students must attain a GPA of at least 2.00 for the courses in the major field.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.
The college is committed to the development of research programs of national prominence.

COURSE REQUIREMENTS

The course work for the undergraduate degree can be classified into the following categories (in semester hours):

First-Year Composition

Choose among the course combinations below ... 6
- ENG 101 First-Year Composition (3)
- ENG 102 First-Year Composition (3)
- or
- ENG 105 Advanced First-Year Composition (3)
- Elective chosen with an advisor (3)
- Elective chosen with an advisor (3)
- or
- ENG 107 English for Foreign Students (3)
- ENG 108 English for Foreign Students (3)

Total ... 6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
- ECN 111 Macroeconomic Principles SB ... 3
- or ECN 112 Microeconomic Principles SB (3)
- HU/SB and awareness area courses\(^1\) .. 12

Total ... 15

Literacy and Critical Inquiry
- CHE 352 Transport Laboratories L .. 3
- ECE 300 Intermediate Engineering Design L 3

Total ... 6

Natural Sciences/Basic Sciences
- CHM 113 General Chemistry SQ .. 4
- CHM 116 General Chemistry SQ ... 4
- CHM 331 General Organic Chemistry 3
- CHM 335 General Organic Chemistry Laboratory 1
- PHY 121 University Physics I: Mechanics SQ\(^2\) 3
- PHY 122 University Physics Laboratory I SQ\(^2\) 1

Total ... 16

Mathematical Studies
- ECE 100 Introduction to Engineering Design CS 4
- ECE 384 Numerical Methods for Engineers............................... 4
- MAT 270 Calculus with Analytic Geometry I MA 4
- MAT 271 Calculus with Analytic Geometry II MA 4
- MAT 272 Calculus with Analytic Geometry III MA 4
- MAT 274 Elementary Differential Equations MA 3

Total ... 23

General Studies/school requirements total... 60

Engineering Core
- CHE 342 Applied Chemical Thermodynamics 4
- CHE 461 Process Control CS .. 4
- ECE 394 ST: Conservation Principles 4
- ECE 394 ST: Engineering Systems 4
- ECE 394 ST: Properties that Matter 4

Total ... 20

Major
- CHE 311 Introduction to Chemical Processing 3
- CHE 331 Transport Phenomena I: Fluids 3
- CHE 332 Transport Phenomena II: Energy Transfer 3
- CHE 333 Transport Phenomena III: Mass Transfer 3
- CHE 432 Principles of Chemical Engineering Design 3
- CHE 442 Chemical Reactor Design 3
- CHE 451 Chemical Engineering Laboratory 2
- CHE 462 Process Design .. 3
- CHM 332 General Organic Chemistry 3

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
ECE 380 Probability and Statistics for Engineering
Problem Solving CS ..3

Technical electives ...13

Total ..42

1 Engineering students may not use aerospace studies (AES) or
 military science (MIS) courses to fulfill HU or SB requirements.

2 Both PHY 121 and 122 must be taken to secure SQ credit.

Students should consult with their department academic
advisors to ensure that all requirements are met.

The technical elective courses must be selected from
upper-division courses with an advisor’s approval and must
include two three-semester-hour chemistry courses; a three-
semester-hour natural science or materials course; and a
three-semester-hour chemical engineering course.

To fulfill accreditation requirements and to prepare ade-
quately for the advanced chemistry courses, Chemical Engi-
neering majors are required to take the CHM 113 and 116
introductory chemistry sequence (CHM 117 and 118 are
acceptable substitutes). Other freshman chemistry courses
are not acceptable, and transfer students who have taken
another chemistry course may be required to enroll in CHM
113 and 116.

Chemical Engineering Areas of Study

Students who wish to specialize may develop an area of
interest through the use of technical electives and selective
substitutions for required courses. Substitutions must be
approved by the advisor and the Department Standards
Committee and must be consistent with ABET accreditation
criteria. No substitution of CHE 462 is allowed. The follow-
ing are possible elective areas with suggested courses. A
student may choose electives within the general department
guidelines and does not have to select one of the areas
listed.

Biochemical. Students wishing to prepare for a career in
biochemistry, fermentation, food processing, pharmaceuti-
cals, and other areas within biochemical engineering should
select from the following:

Chemistry Electives
BCH 361 Principles of Biochemistry3
BCH 461 General Biochemistry3
BCH 462 General Biochemistry3

Technical Electives
CHE 475 Biochemical Engineering3
CHE 476 Bioreaction Engineering3
CHE 477 Bioseparation Processes3
CHE 494 ST: Biotechnology Techniques3

Biomedical. Students who are interested in biomedical
engineering but wish to maintain a strong, broad chemical
engineering base should select from the following:

Chemistry Electives
BCH 361 Principles of Biochemistry3
BCH 461 General Biochemistry3
BCH 462 General Biochemistry3

Technical Electives
BME 318 Biomaterials ...3
BME 435 Physiology for Engineers3

Environmental. Students interested in environmental engi-
neering are encouraged to pursue a B.S.E. degree in Chemi-
cal Engineering with this area of study. Students interested
in the management of hazardous wastes and air and water
pollution should select from the following:

Chemistry Electives
CHM 302 Environmental Chemistry3
BCH 361 Principles of Biochemistry3
BCH 461 General Biochemistry3
CHM 481 Geochemistry ...3
CHM 494 ST: Chemistry of Global Climate Change3

Technical Electives
CEE 561 Physical-Chemical Treatment of Water and Waste3
CEE 563 Environmental Chemistry Laboratory3
CHE 474 Chemical Engineering Design for the Environment3
CHE 478 Industrial Water Quality Engineering3
CHE 479 Air Quality Control ..3

Materials. Students interested in the development and pro-
duction of new materials such as alloys, ceramics, com-
posites, polymers, semiconductors, and superconductors should
select from the following:

Chemistry Electives
CHM 345 Physical Chemistry I3
CHM 346 Physical Chemistry II3
CHM 435 Inorganic Chemistry3
CHM 471 Solid-State Chemistry3

Technical Electives
BME 318 Biomaterials ...3
CHE 458 Semiconductor Material Processing3
ECE 352 Properties of Electronic Materials4
MSE 353 Introduction to Materials Processing and Synthesis3
MSE 354 Experiments in Materials Synthesis and Processing I ...2
MSE 431 Corrosion and Corrosion Control3
MSE 470 Polymers and Composites3

Premedical. Students planning to attend medical school
should select courses from those listed under the biomedical
area. In addition, BIO 181, 182, and CHM 336 must be
taken to satisfy medical-school requirements but are not
counted toward the Chemical Engineering bachelor’s
degree.

Process Engineering. The engineering core and required
chemical engineering courses serve as a suitable back-
ground for students intending to enter the traditional petro-
chemical and chemical process industries. Students can
build on this background by selecting courses with the
approval of their advisor. Examples of these courses are as
follows:

CHE 474 Chemical Engineering Design for the Environment3
CHE 478 Industrial Water Quality Engineering3
CHE 479 Air Quality Control ..3
CHE 494 ST: Advanced Process Control3
CHE 528 Process Optimization Techniques3
CHE 566 Separation Processes3
CHE 563 Chemical Engineering Design3
MAE 436 Combustion ...1–4

Semiconductor Processing. Students interested in the
development and manufacturing of semiconductor and other
electronic devices should select from the following:

Chemistry Electives
CHM 345 Physical Chemistry I3
CHM 346 Physical Chemistry II3
CHM 435 Inorganic Chemistry3
CHM 471 Solid-State Chemistry3
Technical Electives
CHE 458 Semiconductor Material Processing3
CHE 494 Special Topics ...1-4
ECE 352 Properties of Electronic Materials4
EEE 435 Microelectronics ..3
EEE 436 Fundamentals of Solid-State Devices3
EEE 439 Semiconductor Facilities and Cleanroom Practices3
MSE 353 Introduction to Materials Processing and Synthesis ...3
MSE 354 Experiments in Materials Synthesis and Processing I ...2
MSE 472 Integrated Circuit Materials Science3

Chemical Engineering
Program of Study
Typical Four-Year Sequence
First Year

First Semester
CHM 113 General Chemistry SQ ..4
ECE 100 Introduction to Engineering Design CS4
ENG 101 First-Year Composition ..3
MAT 270 Calculus with Analytic Geometry I MA4

Total ..4

Second Semester
CHM 116 General Chemistry SQ ..4
ENG 102 First-Year Composition ...3
MAT 271 Calculus with Analytic Geometry II4
PHY 121 University Physics I: Mechanics SQ*4
PHY 122 University Physics Laboratory I SQ*1

Total ..5

Second Year

First Semester
CHE 311 Introduction to Chemical Processing3
ECE 380 Probability and Statistics for Engineering Problem Solving CS ..3
ECE 394 ST: Conservation Principles4
ECN 111 Macroeconomic Principles SB3
or ECN 112 Microeconomic Principles SB (3)3
MAT 274 Elementary Differential Equations MA3

Total ..6

Second Semester
CHE 331 Transport Phenomena I: Fluids............................3
CHM 331 General Organic Chemistry3
CHM 335 General Organic Chemistry Laboratory1
ECE 394 ST: Properties that Matter4
MAT 272 Calculus with Analytic Geometry III MA4
HU/SB and awareness area course3

Total ..7

Third Year

First Semester
CHE 332 Transport Phenomena II: Energy Transfer3
CHE 342 Applied Chemical Thermodynamics4
ECE 300 Intermediate Engineering Design L3
ECE 384 Numerical Methods for Engineers4
HU/SB and awareness area course3

Total ..8

Second Semester
CHE 333 Transport Phenomena III: Mass Transfer3
CHE 352 Transport Laboratories L3
CHE 432 Principles of Chemical Engineering Design3

Total ..9

Fourth Year

First Semester
CHE 442 Chemical Reactor Design3
CHE 451 Chemical Engineering Laboratory2
CHE 461 Process Control CS ...4
HU/SB and awareness area course3
Technical elective ...3

Total ..10

Second Semester
CHE 462 Process Design ...3
HU/SB and awareness area course3
Technical elective ...3

Total ..13

Total degree requirements ..128

* Both PHY 121 and 122 must be taken to secure SQ credit.

MATERIALS SCIENCE AND ENGINEERING—B.S.E.

Innovations that create new and improved materials help drive the cutting edge of new technologies in many industries, including automotive, aerospace, materials production, semiconductors, electronics, and health professions. The space shuttle, lightweight cars, and today's fastest computers have all been developed using the latest materials technologies. Materials engineers play a critical role in innovations in such applications. In advancing today’s technologies, they fulfill a wide range of job responsibilities. They may

1. select the best material for a given application or develop innovative materials and processing techniques for new applications;
2. analyze materials failures in order to redesign more robust engineering components; and
3. manage or participate with teams of engineers working on larger-scale engineering projects.

In summary, materials engineers play an important role in advancing leading-edge technologies in a wide range of industries.

The mission of the materials science and engineering program is to educate students in the application of basic principles of science toward the design and utilization of materials engineering components for the betterment of humanity. The overall goal of the program is to produce high-quality graduates with a broad-based education in materials engineering who can effectively compete for the best positions in graduate school and or industry.

The mission of the Materials Science and Engineering program is achieved by having its graduates fulfill the following objectives. Graduates will

1. have a strong educational foundation in materials science and engineering that will promote success in a broad range of career opportunities available in graduate school, industry, and government;
2. have the personal skills and values that promote their success in the rapidly changing, culturally diverse workplace that reflects the needs of contemporary society.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Materials Science and Engineering. A minimum of 50 upper-division semester hours is required. Students must attain a GPA of at least 2.00 for the courses in the major field.

Graduation Requirements. In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

Course Requirements. The undergraduate curriculum requires that students take a series of interdisciplinary courses of fundamental importance to an understanding of all engineering materials. Following these are additional courses that may be taken as technical electives to develop an area of study. The courses for the undergraduate degree can be classified into the following categories (in semester hours):

First-Year Composition
Choose among the course combinations below ... 6

ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)

or

ENG 105 Advanced First-Year Composition (3)
Elective chosen with an advisor (3)

ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)

Total ... 6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences

ECN 111 Macroeconomic Principles SB ... 3
or ECN 112 Microeconomic Principles SB (3)
HU, SB, and awareness area courses ... 12

Total ... 15

Literacy and Critical Inquiry

ECE 300 Intermediate Engineering Design L 3
ECE 400 Engineering Communications L 3

Total ... 6

Natural Sciences/Basic Sciences

CHM 113 General Chemistry SQ ... 4
CHM 116 General Chemistry SQ ... 4
PHY 121 University Physics I: Mechanics SQ ¹ 3
PHY 122 University Physics Laboratory SQ ² 3
PHY 131 University Physics II: Electricity and Magnetism SQ ² 3
PHY 132 University Physics Laboratory II SQ ² 1

Total ... 16

Mathematical Studies

ECE 100 Introduction to Engineering Design CS 4
MAT 242 Elementary Linear Algebra ... 2
MAT 270 Calculus with Analytic Geometry I MA 4
MAT 271 Calculus with Analytic Geometry II MA 4
MAT 272 Calculus with Analytic Geometry III MA 4
MAT 274 Elementary Differential Equations MA 3

Total ... 21

General Studies/school requirements total .. 58

Engineering Core

ECE 201 Electrical Networks I .. 4
ECE 210 Engineering Mechanics I: Statics 3
ECE 313 Introduction to Deformable Solids 3
ECE 350 Structure and Properties of Materials 3
MSE 430 Thermodynamics of Materials 3

Total ... 16

Major

ECE 380 Probability and Statistics for Engineering Problem Solving CS ... 3
MSE 353 Introduction to Materials Processing and Synthesis 3
MSE 354 Experiments in Materials Synthesis and Processing I 2
MSE 355 Introduction to Materials Science and Engineering 3
MSE 420 Physical Metallurgy ... 3
MSE 421 Physical Metallurgy Laboratory 1
MSE 440 Mechanical Properties of Solids 3
MSE 450 X-ray and Electron Diffraction 3
MSE 470 Polymers and Composites .. 3
MSE 471 Introduction to Ceramics .. 3
MSE 482 Materials Engineering Design 3
MSE 490 Capstone Design Project ... 3

Total ... 48

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 To take CHM 341 Elementary Physical Chemistry, CHM 331 Organic Chemistry must be taken as the prerequisite.
4 Three of the nine hours must be a non-MSE upper-division engineering elective course.

Materials Science and Engineering Areas of Study

Technical electives may be selected from one or more of the following areas. A student may, with prior approval of the department, select a general area or a set of courses that would support a career objective not covered by the following categories.

Biomaterials. Students interested in the materials used in the body and other living systems to improve or replace body components should choose from the following technical electives:

BME 318 Biomaterials ... 3
BME 411 Biomedical Engineering I 3
BME 412 Biomedical Engineering II 3
BME 413 Biomedical Instrumentation L 3
BME 416 Biomechanics .. 3

Ceramic Materials. Students who want to develop an understanding of the chemistry and processing that control the structure and properties of ceramics and their application should select from these technical electives:

CHM 331 General Organic Chemistry 3
CHM 332 General Organic Chemistry 3
CHM 471 Solid-State Chemistry ... 3
EEE 435 Microelectronics .. 3
ENERGY SYSTEMS. Students interested in the materials used in energy conversion systems such as solar energy or nuclear energy should choose from the following technical electives:

MAE 441 Principles of Design ... 3
MAE 442 Mechanical Systems Design .. 3
MSE 431 Corrosion and Corrosion Control 3
MSE 441 Analysis of Material Failures ... 3

INTEGRATED CIRCUIT MATERIALS. Students interested in the materials used in the semiconductor industry and in how they are processed to achieve the desired properties should choose from the following technical electives:

CHE 458 Semiconductor Material Processing 3
EEE 435 Microelectronics .. 3
EEE 436 Fundamentals of Solid-State Devices 3
EEE 439 Semiconductor Facilities and Cleanroom Practices 3
MSE 471 Introduction to Ceramics ... 3

MANUFACTURING AND MATERIALS PROCESSING. Students interested in the manufacturing and processing of materials for a broad base of applications should choose from the following technical electives:

CHE 458 Semiconductor Material Processing 3
MAE 422 Mechanics of Materials ... 4
MAE 441 Principles of Design .. 3
MAE 442 Mechanical Systems Design .. 3
MSE 431 Corrosion and Corrosion Control 3
MSE 441 Analysis of Material Failures ... 3
MSE 472 Integrated Circuit Materials Science 3

MECHANICAL METALLURGY. Students interested in understanding the design, processing, and manufacturing of metals for structural applications, such as autos, airplanes, and buildings, should choose from the following technical electives:

MAE 415 Vibration Analysis ... 4
MAE 422 Mechanics of Materials ... 4
MAE 441 Principles of Design .. 3
MAE 442 Mechanical Systems Design .. 3
MSE 431 Corrosion and Corrosion Control 3
MSE 441 Analysis of Material Failures ... 3

METALLIC MATERIALS SYSTEMS. Students interested in building an understanding of the basis for the design and processing of metals and alloys should choose from the following technical electives:

MAE 351 Manufacturing Processes ... 3
MSE 431 Corrosion and Corrosion Control 3
MSE 441 Analysis of Material Failures ... 3
MSE 472 Integrated Circuit Materials Science 3

POLYMERS AND COMPOSITES. Students who desire to build an understanding of the chemical and processing basis for the properties of polymers and their applications, including composite systems, should select from the following technical electives:

CHM 331 General Organic Chemistry .. 3
CHM 332 General Organic Chemistry .. 3

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
Fourth Year

First Semester

MSE 440 Mechanical Properties of Solids ... 3
MSE 470 Polymers and Composites ... 3
MSE 471 Introduction to Ceramics .. 3
MSE 482 Materials Engineering Design ... 3
Technical electives ... 6
Total .. 18

Second Semester

ECE 400 Engineering Communications L ... 3
MSE 490 Capstone Design Project ... 3
Advanced science course.. 3
HU/SB and awareness area course ... 3
Technical elective .. 3
Total .. 15
Total degree requirements .. 128

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 To take CHM 341 Elementary Physical Chemistry, CHM 331 Organic Chemistry must be taken as the prerequisite.
4 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU and SB requirements.

GRADUATE STUDY

The faculty in the Department of Chemical and Materials Engineering also offer graduate programs leading to the M.S., M.S.E., and Ph.D. degrees. These programs provide a blend of classroom instruction and research. Many various topical and relevant research projects are available for thesis topics. Students interested in these programs should contact the department for up-to-date descriptive literature.

CHEMICAL ENGINEERING (CHE)

CHE 311 Introduction to Chemical Processing. (3)
fall and spring
Application of chemical engineering analysis and problem solving to chemical processes material and energy balance methods and skills. Prerequisites: CHM 116; MAT 271.

CHE 331 Transport Phenomena I: Fluids. (3)
fall and spring
Transport phenomena, with emphasis on fluid systems. Prerequisites: CHE 311; ECE 394 ST: Conservation Principles; MAT 274.

CHE 332 Transport Phenomena II: Energy Transfer. (3)
fall and spring
Continuation of transport principles, with emphasis on energy transport in stationary and fluid systems. Prerequisite: CHE 331.

CHE 333 Transport Phenomena III: Mass Transfer. (3)
fall and spring
Application of transport phenomena to mass transfer. Design of mass transfer equipment, including staged processes. Prerequisite: CHE 332.

CHE 342 Applied Chemical Thermodynamics. (4)
fall and spring

CHE 352 Transport Laboratories. (3)
spring
Demonstration of transport phenomena principles with experiments in fluid flow, heat, and mass transfer. Prerequisites: CHE 332; ECE 300. Pre- or corequisite: CHE 333.

CHE 352 Principles of Chemical Engineering Design. (3)
fall
Multicomponent distillation, engineering economics, equipment sizing and costs, plant operation economics, and simulation and optimization techniques. Prerequisites: CHE 332, 342.

CHE 422 Chemical Reactor Design. (3)
fall and spring
Application of kinetics to chemical reactor design. Prerequisite: CHE 332. Pre- or corequisite: CHE 333.

CHE 451 Chemical Engineering Laboratory. (2)
fall
Introduction to the processing and characterization of electronic materials for semiconductor applications. Prerequisites: CHE 333, 342.

CHE 461 Process Control. (4)
spring
Process dynamics, instrumentation, and feedback applied to automatic process control. Lecture, lab. Prerequisite: ECE 394 ST: Engineering Systems.

CHE 474 Chemical Engineering Design for the Environment. (3)
fall
Conflict of processing materials and preserving the natural resources. Students understand and value the environment and attempt to control our impact. Prerequisites: CHE 333, 342.

Chemical treatment processing, quality criteria and control, system design, and water pollutants. Prerequisites: CHE 331; senior standing.

CHE 479 Air Quality Control. (3)
fall
Air pollutant control, effects, and origins. Chemical and physical processes, including combustion, control equipment design, dispersion, and sampling. Prerequisites: CHE 331; senior standing.

CHE 490 Chemical Engineering Projects. (1–5)
fall, spring, summer
Individual projects in chemical engineering operations and design. Prerequisite: instructor approval.

CHE 494 Special Topics. (1–4)
fall and spring
Possible topics:
(a) Advanced Process Control. (3)
(b) Biotechnology Techniques. (3)

CHE 496 Professional Seminar. (1–3)
fall and spring
Professional and ethical aspects with a discussion of responsibilities. Lecture, field trips. Prerequisite: instructor approval.

CHE 501 Introduction to Transport Phenomena. (3)
fall and spring
Transport phenomena, with emphasis on fluid systems. Prerequisite: transition student with instructor approval.
CHE 502 Introduction to Energy Transport. (3)
fall and spring
Continuation of transport principles, with emphasis on energy transport in stationary and fluid systems. Prerequisite: transition student with instructor approval.

CHE 503 Introduction to Mass Transport. (3)
fall and spring
Application of transport phenomena to mass transfer. Design of mass transfer equipment, including staged processes. Prerequisite: transition student with instructor approval.

CHE 504 Introduction to Chemical Thermodynamics. (3)
fall and spring
Energy relations and equilibrium conversions based on chemical potentials and phase equilibria. Prerequisite: transition student with instructor approval.

CHE 505 Introduction to Chemical Reactor Design. (3)
fall and spring
Application of kinetics to chemical reactor design. Prerequisite: transition student with instructor approval.

CHE 527 Advanced Applied Mathematical Analysis in Chemical Engineering. (3)
fall
Formulation and solution of complex mathematical relationships resulting from the description of physical problems in mass, energy, and momentum transfer and chemical kinetics.

CHE 528 Process Optimization Techniques. (3)
spring
Method for optimizing engineering processes. Experimental design and analysis; linear and nonlinear regression methods; classical, search, and dynamic programming algorithms.

CHE 533 Transport Processes I. (3)
fall
Unified treatment of momentum, heat, and mass transfer from molecular theory, and continuum points of view. Continuum equations of microscopic and macroscopic systems and multicomponent and multiphase systems. Cross-listed as BME 533. Credit is allowed for only BME 533 or CHE 533.

CHE 534 Transport Processes II. (3)
spring
Continuation of BME 533 or CHE 533, emphasizing mass transfer. Cross-listed as BME 534. Credit is allowed for only BME 534 or CHE 534. Prerequisite: CHE 533 or BME 533.

CHE 536 Convective Mass Transfer. (3)
not regularly offered
Turbulent flow for multicomponent systems, including chemical reactions with applications in separations and air pollution. Prerequisite: CHE 533 or MAE 571.

CHE 543 Thermodynamics of Chemical Systems. (3)
fall
Classical and statistical thermodynamics of nonideal physicochemical systems and processes; prediction of optimum operating conditions. Cross-listed as BME 543. Credit is allowed for only BME 543 or CHE 543.

CHE 544 Chemical Reactor Engineering. (3)
spring
Reaction rates, thermodynamics, and transport principles applied to the design and operation of chemical reactors. Cross-listed as BME 544. Credit is allowed for only BME 544 or CHE 544. Prerequisite: BME 543 or CHE 543.

CHE 548 Topics in Catalysis. (3)
not regularly offered
Engineering catalysis, emphasizing adsorption, kinetics, characterization, diffusional considerations, and reactor design. Other topics include mechanisms, surface analyses, and electronic structure.

CHE 552 Industrial Water Quality Engineering. (3)
not regularly offered
Water pollutants, quality criteria and control, chemical treatment processing, and system design. Case studies. Prerequisite: CHE 331 (or its equivalent).

CHE 553 Air Quality Control. (3)
not regularly offered
Air pollutant origins, effects, and control. Physical and chemical processes, including dispersion, combustion, sampling, control equipment design, and special topics. Prerequisite: CHE 331 (or its equivalent).

CHE 554 New Energy Technology. (3)
not regularly offered

CHE 556 Separation Processes. (3)
not regularly offered
Topics in binary/multicomponent separation, rate governed and equilibration processes, mass transfer criteria, energy requirements, separating agents and devices, and staged operations.

CHE 558 Electronic Materials. (3)
not regularly offered
Processing and characterization of electronic materials for semiconductor-type uses. Thermodynamics and transport phenomena, phase equilibria and structure, mass transfer, and diffusion and thermal properties.

CHE 561 Advanced Process Control. (3)
spring
Dynamic process representation, linear optimal control, optimal state reconstruction, and parameter and state estimation techniques for continuous and discrete time systems.

CHE 563 Chemical Engineering Design. (3)
not regularly offered
Computational methods; the design of chemical plants and processes.

MATERIALS SCIENCE AND ENGINEERING (MSE)

MSE 353 Introduction to Materials Processing and Synthesis. (3)
fall
Principles of materials structure and properties with emphasis on applications in bulk and thin film materials processing and synthesis. Prerequisites: CHM 116 and PHY 131 (or their equivalents).

MSE 354 Experiments in Materials Synthesis and Processing. (2)
spring
Small groups of students complete three experiments selected from a list. Each is supervised by a selected faculty member. Lab. Prerequisite: MSE 353 (or its equivalent).

MSE 355 Introduction to Materials Science and Engineering. (3)
fall
Elements of the structure of metals and alloys, measurement of mechanical properties, and optical metallography. Lecture, lab, field trips. Prerequisite: CHM 114 or 116.

MSE 420 Physical Metallurgy. (3)
spring
Crystal structure and defects. Phase diagrams, metallography, solidification and casting, deformation, and annealing. Prerequisite: ECE 350.

MSE 421 Physical Metallurgy Laboratory. (1)
spring
Focuses on analysis of microstructure of metals and alloys and includes correlation with mechanical properties to some extent. Lab. Pre- or corequisite: MSE 420.

MSE 430 Thermodynamics of Materials. (3)
spring
Principles of statistical mechanics, statistical thermodynamics of single crystals, solutions, phase equilibrium, free energy of reactions, free electron theory, and thermodynamics of defects. Prerequisite: ECE 350.

MSE 431 Corrosion and Corrosion Control. (3)
spring
Introduction to corrosion mechanisms and methods of preventing corrosion. Topics include the following: electrochemistry, polarization, corrosion rates, oxidation, coatings, and cathodic protection. Prerequisite: ECE 350.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “Unversity Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
MSE 440 Mechanical Properties of Solids. (3)
fall
Effects of environmental and microstructural variables of mechanical properties, including plastic deformation, fatigue, creep, brittle fracture, and internal friction. Prerequisite: ECE 350.

MSE 441 Analysis of Material Failures. (3)
spring

MSE 450 X-ray and Electron Diffraction. (3)
spring

MSE 470 Polymers and Composites. (3)
fall
Relationship between chemistry, structure, and properties of engineering polymers. Design, properties, and behavior of fiber composite systems. Cross-listed as MAE 455. Credit is allowed for only MAE 455 or MSE 470. Prerequisite: ECE 350.

MSE 471 Introduction to Ceramics. (3)
fall
Principles of structure and property relations in ceramic materials. Processing techniques. Applications in mechanical, electronic, and superconducting systems. Prerequisite: ECE 350.

MSE 472 Integrated Circuit Materials Science. (3)
not regularly offered
Principles of materials science applied to semiconductor processing and fabrication in metals, ceramics, polymers, and semiconductors. Prerequisite: ECE 350.

MSE 482 Materials Engineering Design. (3)
spring
Principles of the design process. Feasibility and optimization. Manufacturing processes, materials selection, failure analysis, and economics. Prerequisites: ECE 313, 350.

MSE 490 Capstone Design Project. (1–3)
fall and spring
For small groups in fundamental or applied aspects of engineering materials; emphasis on experimental problems and design. Prerequisites: MSE 430, 440, 450.

MSE 510 X-ray and Electron Diffraction. (3)
spring
Fundamentals of X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Techniques for studying surfaces, internal microstructures, and fluorescence. Lecture, demonstrations. Prerequisite: transition student with instructor approval.

MSE 511 Corrosion and Corrosion Control. (3)
not regularly offered
Introduction to corrosion mechanisms and methods of preventing corrosion. Topics include: electrochemistry, polarization, corrosion rates, oxidation, coatings, and cathodic protection. Prerequisite: transition student with instructor approval.

MSE 512 Analysis of Material Failures. (3)
not regularly offered
Identification of types of failures. Analytical techniques. Fractography, SEM, nondestructive inspection, and metallography. Mechanical and electronic components. Prerequisite: transition student with instructor approval.

MSE 513 Polymers and Composites. (3)
fall
Relationship between chemistry, structure, and properties of engineering polymers. Design, properties, and behavior of fiber composite systems.

MSE 514 Physical Metallurgy. (3)
spring
Crystal structure and defects. Phase diagrams, metallography, solidification and casting, and deformation and annealing. Prerequisite: transition student with instructor approval.

MSE 515 Thermodynamics of Materials. (3)
not regularly offered
Principles of statistical mechanics, statistical thermodynamics of single crystals, solutions, phase equilibrium, free energy of reactions, free electron theory, and thermodynamics of defects. Prerequisite: transition student with instructor approval.

MSE 516 Mechanical Properties of Solids. (3)
fall
Effects of environmental and microstructural variables of mechanical properties, including plastic deformation, fatigue, creep, brittle fracture, and internal friction. Prerequisite: transition student with instructor approval.

MSE 517 Introduction to Ceramics. (3)
fall
Principles of structure, property relations in ceramic materials. Processing techniques. Applications in mechanical, electronic, and superconducting systems. Prerequisite: transition student with instructor approval.

MSE 518 Integrated Circuits Materials Science. (3)
not regularly offered
Principles of materials science applied to semiconductor processing and fabrication in metals, ceramics, polymers, and semiconductors. Prerequisite: transition student with instructor approval.

MSE 519 Physical Metallurgy Laboratory. (1)
spring
Analyzes microstructure of metals and alloys and includes some correlation with mechanical properties. Lab. Pre- or corequisite: MSE 514.

MSE 520 Theory of Crystalline Solids. (3)
not regularly offered
Anisotropic properties of crystals; tensor treatment of elastic, magnetic, electric and thermal properties, and crystallography of Martensitic transformations.

MSE 521 Defects in Crystalline Solids. (3)
not regularly offered
Introduction to the geometry, interaction, and equilibrium between dislocations and point defects. Discusses relations between defects and properties. Prerequisite: ECE 350 or instructor approval.

MSE 530 Materials Thermodynamics and Kinetics. (3)
not regularly offered
Thermodynamics of alloy systems, diffusion in solids, kinetics of precipitation, and phase transformations in solids. Prerequisites: ECE 340, 350.

MSE 540 Fracture, Fatigue, and Creep. (3)
not regularly offered
Relationship between microstructure and fracture; fatigue and creep properties of materials. Environmental effects and recent developments. Current theories and experimental results. Prerequisite: MSE 440 (or its equivalent).

MSE 550 Advanced Materials Characterization. (3)
not regularly offered
Analytical instrumentation for characterization of materials; SEM, SIMS, Auger, analytical TEM, and other advanced research techniques.

MSE 555 Electron Microscopy Laboratory. (3)
fall
Lab support for MSE 558. Cross-listed as SEM 556. Credit is allowed for only MSE 556 or SEM 556. Pre- or corequisite: MSE 558 or SEM 558.

MSE 557 Electron Microscopy Laboratory. (3)
spring
Lab support for MSE 559. Cross-listed as SEM 557. Credit is allowed for only MSE 557 or SEM 557. Pre- or corequisite: MSE 559 or SEM 559.

MSE 558 Electron Microscopy I. (3)
fall
Microanalysis of the structure and composition of materials using images, diffraction, X-ray, and energy loss spectroscopy. Requires knowledge of elementary crystallography, reciprocal lattice, stereographic projections, and complex variables. Cross-listed as SEM 558. Credit is allowed for only MSE 558 or SEM 558. Prequisite: instructor approval.

MSE 559 Electron Microscopy II. (3)
spring
Microanalysis of the structure and composition of materials using images, diffraction, X-ray, and energy loss spectroscopy. Requires knowledge of elementary crystallography, reciprocal lattice, stereographic projections, and complex variables. Cross-listed as SEM 559. Credit is allowed for only MSE 559 or SEM 559. Prerequisite: instructor approval.
MSE 560 Strengthening Mechanisms. (3)
not regularly offered
Deformation of crystalline materials. Properties of dislocations. Theories of strain hardening, solid solution, precipitation, and transformation strengthening. Prerequisite: ECE 350 (or its equivalent).

MSE 561 Phase Transformation in Solids. (3)
not regularly offered
Heterogeneous and homogeneous precipitation reactions, shear dislocation reactions, and order-disorder transformation.

MSE 562 Ion Implantation. (3)
not regularly offered
Includes defect production and annealing, Generalized treatment, including ion implantation, neutron irradiation damage, and the interaction of other incident beams. Prerequisite: MSE 450.

MSE 570 Polymer Structure and Properties. (3)
not regularly offered
Relationships between structure and properties of synthetic polymers, including glass transition, molecular relaxations, crystalline state viscoelasticity, morphological characterization, and processing.

MSE 571 Ceramics. (3)
not regularly offered
Includes ceramic processing, casting, molding, firing, sintering, crystal defects, and mechanical, electronic, and physical properties. Prerequisite: MSE 521, 561.

MSE 573 Magnetic Materials. (3)
not regularly offered
Emphasizes ferromagnetic and ferrimagnetic phenomena. Domains, magnetic anisotropy, and magnetostriction. Study of commercial magnetic materials. Prerequisite: MSE 520 (or its equivalent).

MSE 598 Special Topics. (1–4)
not regularly offered
Possible topics:
(a) Growth and Processing of Semiconductor Devices. (3)

Department of Civil and Environmental Engineering

Sandra L. Houston
Chair
(ECG 252) 480/965-3589
www.eas.asu.edu/~civil

PROFESSORS
S. HOUSTON, W. HOUSTON, MAMLJUK, MAYS, RAJAN, SINGHAL, WITCZAK

ASSOCIATE PROFESSORS
ABBASZADEGAN, FAFITIS, FOX, HINKS, JOHNSON, MOBASHER

ASSISTANT PROFESSORS
ALLEN, DILLNER, MUCCINO, OWUSU-ANTWI, WESTERHOFF, ZHU

The civil engineering profession includes analysis, planning, design, construction, and maintenance of many types of facilities for government, commerce, industry, and the public domain. These facilities include high-rise office towers, factories, schools, airports, tunnels and subway systems, dams, canals, and water purification and environmental protection facilities such as solid waste and wastewater treatment systems. Civil engineers are concerned with the impact of their projects on the public and the environment, and they attempt to coordinate the needs of society with technical and economic feasibility.

Career Opportunities in the Field. University graduates with the B.S.E. degree in Civil Engineering readily find employment. Civil engineers work in many different types of companies, from large corporations to small, private consulting firms, or in governmental agencies. A civil engineering background is an excellent foundation for jobs in management and public service. Civil engineering is one of the best engineering professions from the viewpoint of international travel opportunities or for eventually establishing one’s own consulting business.

Uniqueness of the Program at ASU. The faculty in the Department of Civil and Environmental Engineering at ASU offer a challenging program of study designed to provide the student with the resources and background to pursue a career in a wide range of specialty areas. Some of these areas are structural, geotechnical, environmental and water resources, transportation and materials engineering. The Civil Engineering program is fully accredited by ABET. With the program, students will be prepared for the Fundamentals of Engineering examination and professional registration.

The Department of Civil and Environmental Engineering offers challenging programs of study designed to provide students with the scientific and technical resources to pursue a broad and multifaceted range of careers.

Civil Engineering Areas of Study

Areas of study in the civil engineering curriculum are described below.

Environmental Engineering. This area of study includes the quality of air, water, and land resources; transport, use, and disposal of hazardous wastes; water and wastewater treatment; and water reuse.

Geotechnical/Geoenvironmental Engineering. This area of study includes the analysis and design of foundation systems, seepage control, earthdams and water resource structures, earthwork operations, fluid flow through porous media, response of foundations and embankments to earthquakes, and solutions to environmental problems.

Structures/Materials Engineering. This area of study considers the planning, analysis and design of steel and concrete bridges, buildings, dams; special offshore and space structures; Portland cement concrete; composite materials; and structural retrofit of existing bridges.

Transportation/Materials Engineering. This area of study includes (1) transportation planning, design, and operation and (2) pavements and materials. Transportation planning, design, and operation covers urban transport planning, geometric design of facilities, traffic operations, evaluation of highway capacity and safety, and intelligent vehicle/highway systems. Pavements and materials focus on pavement analysis and design; pavement maintenance and rehabilitation; pavement evaluation and management;

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
characterization of highway materials; and durability of highway structures.

Water Resources Engineering. This area of study is concerned with surface and groundwater flow, planning and management of water supply, and water distribution system modeling.

The undergraduate program provides an excellent background for entry to graduate study in engineering.

UNDERGRADUATE OPPORTUNITIES IN CIVIL AND ENVIRONMENTAL ENGINEERING

Students majoring in Civil Engineering have three choices:

1. the major without a concentration;
2. the major with a concentration in construction engineering; and
3. the major with a concentration in environmental engineering.

Civil Engineering. The B.S.E. degree in Civil Engineering offers students a wide background on various areas of study within civil and environmental engineering. The degree provides basic principles of environmental, geotechnical/geoenvironmental, structural/materials, transportation/materials, and water resources engineering. Students have the option to select among a certain number of design and technical elective courses in their junior and senior years.

Civil Engineering with Construction Engineering Concentration. The B.S.E. degree in Civil Engineering with a construction engineering concentration offers students basic principles of civil engineering with the option to concentrate on construction engineering. The degree provides education based on the traditional engineering principles, construction materials and practice, quality control, and civil engineering project management.

Civil Engineering with Environmental Engineering Concentration. The B.S.E. degree in Civil Engineering with an environmental engineering concentration offers students basic principles of civil engineering with the option to concentrate on environmental engineering. The degree provides a multidisciplinary education based on the traditional engineering principles, chemistry, biology, and hydrogeology.

CIVIL ENGINEERING—B.S.E.

The B.S.E. degree in Civil Engineering requires a minimum of 128 semester hours of course work. A minimum of 50 upper-division semester hours is required. The minimum requirements are for a student who has successfully completed at least a year (each) of high school chemistry, physics, and computer programming along with precalculus, algebra, and trigonometry.

The B.S.E. degree program consists of the following categories:

Civil Engineering

First-Year Composition ... 6
General Studies/school requirements ... 55
Engineering core ... 19–20
Major ... 47–48
Minimum total ... 128

Civil Engineering with Construction Engineering Concentration

First-Year Composition ... 6
General Studies/school requirements ... 55
Engineering core ... 20
Major ... 47
Total .. 128

Civil Engineering with Environmental Engineering Concentration

First-Year Composition ... 6
General Studies/school requirements ... 55
Engineering core ... 19
Major ... 48
Total .. 128

Graduation Requirements

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

Course Requirements. For more information concerning School of Engineering requirements for admission, degree, course, and graduation requirements, see “School of Engineering,” page 211 of this catalog.

DEGREE REQUIREMENTS WITHOUT CONCENTRATION

Civil Engineering Core

Twenty-six semester hours are required. All chemistry (CHM), mathematics (MAT), physics (PHY), and engineering core (ECE) courses, except ECE 380 and 384, must be completed with an average grade of “C” or higher. CEE courses, except CEE 296, may not be taken in any semester until the above mentioned courses are completed or are being completed in that semester. No 400-level courses may be taken until ECE 380 and 384 have been completed. Each sequence of the CEE courses and the senior design and technical elective courses must be completed with an average grade of “C” or higher.

CEE 296 Civil Engineering Systems ... 3
CEE 321 Structural Analysis and Design 4
CEE 341 Fluid Mechanics for Civil Engineers 4
CEE 351 Geotechnical Engineering .. 4
CEE 361 Introduction to Environmental Engineering 4
CEE 372 Transportation Engineering ... 4
ECE 380 Probability and Statistics for Engineering Problem Solving C5 ... 3

Total .. 26

Civil Engineering Design Electives

Six semester hours from the following list are required.

CEE 423 Structural Design ... 3
CEE 441 Water Resources Engineering 3
CEE 452 Foundations ... 3
CEE 466 Sanitary Systems Design ... 3
CEE 475 Highway Geometric Design .. 3

Civil Engineering Technical Electives

From 15 to 16 semester hours are required. The design elective courses that have not been selected to satisfy the design electives requirement (see above) may be used as technical electives.

A maximum of seven hours may be selected from outside civil engineering, with an advisor’s approval. Construction
Note: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see "General Studies," page 78. For graduation requirements, see "University Graduation Requirements," page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see "Classification of Courses," page 51.
technical elective courses must be completed with an average grade of “C” or higher.

CEE 296 Civil Engineering Systems ...3
CEE 321 Structural Analysis and Design ..4
CEE 341 Fluid Mechanics for Civil Engineers4
CEE 351 Geotechnical Engineering ..4
CEE 361 Introduction to Environmental Engineering4
CEE 372 Transportation Engineering ..4
ECE 380 Probability and Statistics for Engineering Problem
Solving CS ..3

Total ..26

Construction Engineering Design Courses
CEE 322 Steel Structures ...3
CEE 452 Foundations ...3

Total ..6

Construction Engineering Technical Courses
CEE 323 Concrete Structures ...3
CEE 481 Civil Engineering Project Management3
CEE 483 Highway Materials, Construction, and Quality3
CON 341 Surveying ..3
CON 496 Construction Contract Administration L3

Total ..15

Construction Engineering Concentration
Program of Study
A Four-Year Sequence

First Year

CHM 114 General Chemistry for Engineers SQ4
or CHM 116 General Chemistry SQ (4)
ECE 100 Introduction to Engineering Design CS4
ENG 101 First-Year Composition ..3
MAT 270 Calculus with Analytic Geometry I MA4

Total ..15

Second Semester

CEE 296 Civil Engineering Systems ...3
ECN 111 Macroeconomic Principles SB3
or ECN 112 Microeconomic Principles SB (3)
ENG 102 First-Year Composition ..3
MAT 271 Calculus with Analytic Geometry II MA4
PHY 121 University Physics I: Mechanics SQ3
PHY 122 University Physics Laboratory I SQ3

Total ..17

Second Year

First Semester

ECE 210 Engineering Mechanics I: Statics3
MAT 272 Calculus with Analytic Geometry III MA4
MAT 274 Elementary Differential Equations MA3
PHY 131 University Physics II: Electricity and
Magnetism SQ ..3
PHY 132 University Physics Laboratory II SQ3
HU/SB and awareness area course ..3

Total ..17

Second Semester

ECE 212 Engineering Mechanics II: Dynamics3
ECE 313 Introduction to Deformable Solids3
ECE 380 Probability and Statistics for Engineering Problem
Solving CS ..3
Basic science elective ..3

Total ..16

Third Year

First Semester

CEE 321 Structural Analysis and Design4
CEE 341 Fluid Mechanics for Civil Engineers4
ECE 300 Intermediate Engineering Design L3
CEE 351 Civil Engineering Materials ..3
CEE 384 Numerical Methods for Engineers4

Total ..18

Second Semester

CEE 351 Geotechnical Engineering ..4
CEE 361 Introduction to Environmental Engineering4
CEE 372 Transportation Engineering ..4

Total ..15

Fourth Year

First Semester

CEE 322 Steel Structures ..3
CEE 452 Foundations ...3
CEE 481 Civil Engineering Project Management3
CON 341 Surveying ...3
HU/SB and awareness area course ..3

Total ..15

Second Semester

CEE 323 Concrete Structures ...3
CEE 483 Highway Materials, Construction, and Quality3
CEE 486 Integrated Civil Engineering Design L3
CON 496 Construction Contract Administration L3
HU/SB and awareness area course ..3

Total ..15

Graduation requirement total ..128

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU or SB requirements. Students should consider the following list of electives to enhance communication and management skills: COM 100, 110, 320; PUP 100, 200.

A maximum of two graduate courses may be taken for undergraduate credit by students whose cumulative GPA is 3.00 or higher and with the approval of the instructor, advisor, department chair, and the dean of the college.

DEGREE REQUIREMENTS WITH ENVIRONMENTAL ENGINEERING CONCENTRATION

Environmental Engineering Core

Twenty-nine semester hours are required. All chemistry (CHM), mathematics (MAT), physics (PHY), and engineering core (ECE) courses, except ECE 380 and 384, must be completed with an average grade of “C” or higher. CEE courses, except CEE 296, may not be taken in any semester until the above mentioned courses are completed or are being completed in that semester. No 400-level courses may be taken until ECE 380 and 384 have been completed. Each sequence of the CEE courses and the senior design and technical elective courses must be completed with an average grade of “C” or higher.

CEE 296 Civil Engineering Systems ...3
CEE 321 Structural Analysis and Design4
CEE 321 Structural Analysis and Design4
CEE 341 Fluid Mechanics for Civil Engineers4
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 351</td>
<td>Geotechnical Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CEE 361</td>
<td>Introduction to Environmental Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CEE 372</td>
<td>Transportation Engineering</td>
<td>4</td>
</tr>
<tr>
<td>CHM 341</td>
<td>Elementary Physical Chemistry</td>
<td>3</td>
</tr>
<tr>
<td>ECE 380</td>
<td>Probability and Statistics for Engineering Problem Solving CS</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 29

Environmental Engineering Design Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 441</td>
<td>Water Resources Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 466</td>
<td>Sanitary Systems Design</td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 6

Environmental Engineering Technical Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIO 320</td>
<td>Fundamentals of Ecology</td>
<td>3</td>
</tr>
<tr>
<td>or BCH 361 Principles of Biochemistry (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or CHM 302 Environmental Chemistry (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or PUP 442 Environmental Planning (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or PUP 475 Environmental Impact Assessment (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEE 362</td>
<td>Unit Operations in Environmental Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CEE 440</td>
<td>Engineering Hydrology</td>
<td>3</td>
</tr>
<tr>
<td>CEE 467</td>
<td>Environmental Microbiology</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 13

Environmental Engineering Concentration

Program of Study

A Four-Year Sequence

First Year

First Semester

- CHM 114 General Chemistry for Engineers SQ | 4
- ECE 100 Introduction to Engineering Design CS | 4
- ENG 101 First-Year Composition | 3
- MAT 270 Calculus with Analytic Geometry I MA | 4

Total: 15

Second Semester

- CEE 296 Civil Engineering Systems | 3
- ECN 111 Macroeconomic Principles SB | 3
- or ECN 112 Microeconomic Principles SB (3) | 3
- ENG 102 First-Year Composition | 3
- MAT 271 Calculus with Analytic Geometry II MA | 4
- PHY 121 University Physics I: Mechanics SQ | 3
- PHY 122 University Physics Laboratory I SQ | 3

Total: 17

Second Year

First Semester

- ECE 210 Engineering Mechanics I: Statics | 3
- MAT 272 Calculus with Analytic Geometry III MA | 4
- MAT 274 Elementary Differential Equations MA | 3
- PHY 131 University Physics II: Electricity and Magnetism SQ | 3
- PHY 132 University Physics Laboratory II SQ | 3

HU/SB and awareness area course | 3

Total: 17

Second Semester

- CHM 231 Elementary Organic Chemistry SQ | 3
- ECE 212 Engineering Mechanics II: Dynamics | 3
- ECE 313 Introduction to Deformable Solids | 3
- ECE 340 Thermodynamics | 3
- ECE 380 Probability and Statistics for Engineering Problem Solving CS | 3

Total: 15

Third Year

First Semester

- CEE 321 Structural Analysis and Design | 4
- CEE 341 Fluid Mechanics for Civil Engineers | 4
- ECE 372 Transportation Engineering | 4
- CEE 351 Civil Engineering Materials | 3
- ECE 384 Numerical Methods for Engineers | 4

Total: 18

Second Semester

- CEE 351 Geotechnical Engineering | 4
- CEE 361 Introduction to Environmental Engineering | 4
- CEE 372 Transportation Engineering | 4
- BIO 320 Fundamentals of Ecology | 3
- or BCH 361 Principles of Biochemistry (3) | 3
- or CHM 302 Environmental Chemistry (3) | 3
- or CHM 341 Elementary Physical Chemistry (3) | 3
- or PUP 442 Environmental Planning (3) | 3
- or PUP 475 Environmental Impact Assessment (3) | 3

Total: 18

Fourth Year

First Semester

- CEE 362 Unit Operations in Environmental Engineering | 3
- CEE 440 Engineering Hydrology | 3
- CEE 466 Sanitary Systems Design | 3
- CEE 467 Environmental Microbiology | 4
- HU/SB and awareness area course | 3

Total: 16

Second Semester

- CEE 441 Water Resources Engineering | 3
- CEE 486 Integrated Civil Engineering Design L | 3
- HU/SB and awareness area course | 3
- Technical elective | 3

Total: 12

Graduation requirement total: 128

1. Both PHY 121 and 122 must be taken to secure SQ credit.
2. Both PHY 131 and 132 must be taken to secure SQ credit.
3. Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU or SB requirements.

A maximum of two graduate courses may be taken for undergraduate credit by students whose cumulative GPA is 3.00 or higher with the approval of the instructor, advisor, department chair, and the dean of the college.

Concurrent Studies in Architecture and Civil Engineering

Undergraduate. Qualified lower-division students interested in combining studies in architecture and civil engineering may prepare for upper-division and graduate courses in both programs by taking courses shown for option B under the Architectural Studies major. See “Architectural Studies—B.S.D.,” page 125.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
CIVIL AND ENVIRONMENTAL ENGINEERING (CEE)

CEE Note 1. Students enrolled in CEE 580, 590, 592, 599, 792, and 799 are required to attend graduate student seminars at the times shown in the Schedule of Classes.

CEE Note 2. Each semester, every graduate student enrolled for more than eight semester hours is to enroll for at least one semester hour of CEE 592, 599, 792, or 799.

CEE 296 Civil Engineering Systems. (3)
fall and spring
Introduction to civil engineering. Problem solving, economics, description of civil engineering systems, design concepts, ethics, and professional responsibilities. Lecture, field trips. Pre- or corequisite: ECE 100.

CEE 321 Structural Analysis and Design. (4)
fall and spring
Statically determinate and indeterminate structures (trusses, beams, and frames) by classical and matrix methods. Introduction to structural design. Lecture, recitation. Prerequisites: ECE 312, 313. Pre- or corequisites: ECE 380, 384.

CEE 322 Steel Structures. (3)
fall

CEE 323 Concrete Structures. (3)
spring
Behavior of concrete structures and the design of reinforced and prestressed concrete members, including footings. Partial design of concrete building system. Lecture, recitation. Prerequisite: CEE 321.

CEE 340 Hydraulics and Hydrology. (3)
fall and spring
Application of hydraulic engineering principles to flow of liquids in pipe systems and open channels; hydrostatics; characteristics of pumps and turbines. Introduction to hydrology. Not open to engineering students. Lecture, lab. Prerequisite: CON 221.

CEE 341 Fluid Mechanics for Civil Engineers. (4)
fall and spring
Fundamental principles and methods of fluid mechanics forming the analytical basis for water resources engineering. Conduit and open channel flow. 3 hours lecture, 1 hour lab. Prerequisites: ECE 312, 313. Pre- or corequisites: ECE 380, 384.

CEE 351 Geotechnical Engineering. (4)
fall and spring
Index properties and engineering characteristics of soils. Compaction, permeability and seepage, compressibility and settlement, and shear strength. Lecture, lab. Prerequisites: ECE 312, 313. Pre- or corequisites: ECE 380, 384.

CEE 361 Introduction to Environmental Engineering. (4)
fall and spring
Concepts of air and water pollution; environmental regulation, risk assessment, chemistry, water quality modeling, and wastewater treatment systems designs. Lecture, lab. Prerequisites: ECE 312, 313. Pre- or corequisiti: ECE 380, 384.

CEE 362 Unit Operations in Environmental Engineering. (3)
spring
Design and operation of unit processes for water and wastewater treatment. Prerequisite: CEE 361.

CEE 372 Transportation Engineering. (4)
fall and spring
Highway, rail, water, and air transportation. Operational characteristics and traffic control devices of each transport mode. Impact on urban form. Prerequisites: ECE 312, 313. Pre- or corequisites: ECE 380, 384.

CEE 412 Pavement Analysis and Design. (3)
fall
Design of flexible and rigid pavements for highways and airports. Surface, base, and subgrade courses. Cost analysis and pavement selection. Prerequisites: CEE 351; ECE 351.

CEE 423 Structural Design. (3)
fall
Analysis and design of reinforced concrete steel, masonry, and timber structures. Lecture, lab. Prerequisite: CEE 323. Pre- or corequisite: CEE 322.

CEE 432 Matrix and Computer Applications in Structural Engineering. (3)
spring
Matrix and computer applications to structural engineering and structural mechanics. Stiffness and flexibility methods, finite elements, and differences. Prerequisite: CEE 321.

CEE 440 Engineering Hydrology. (3)
fall
Descriptive hydrology; hydrologic cycle, models, and systems. Rain-runoff models. Hydrologic design. Concepts, properties, and basic equations of groundwater flow. Prerequisite: CEE 341.

CEE 441 Water Resources Engineering. (3)
spring
Application of the principles of hydraulics and hydrology to the engineering of water resources projects; design and operation of water resources systems; water quality. Prerequisite: CEE 341.

CEE 452 Foundations. (3)
fall
Applications of soil mechanics to foundation systems, bearing capacity, lateral earth pressure, and slope stability. Prerequisite: CEE 351.

CEE 466 Sanitary Systems Design. (3)
fall
Capacity, planning and design of water supply, domestic and storm drainage, and solid waste systems. Prerequisite: CEE 361.

CEE 467 Environmental Microbiology. (4)
fall
Overview of the microbiology of natural and human-impacted environment, microbial detection methodologies, waterborne disease outbreaks, risk assessment, and regulations. Lecture, lab. Prerequisite: CEE 361 or MIC 220.

CEE 471 Intelligent Transportation Systems. (3)
not regularly offered
Application of advanced technology to the vehicle and the roadway to solve traffic congestion, safety, and air quality problems. Prerequisite: CEE 372 or instructor approval.

CEE 475 Highway Geometric Design. (3)
spring
Design of the visible elements of the roadway. Fundamental design controls with application to rural roads, at-grade intersections, freeways, and interchanges. Lecture, recitation. Prerequisite: CEE 372.

CEE 481 Civil Engineering Project Management. (3)
not regularly offered
Civil engineering project management and administration, planning and scheduling, cost estimating and bidding strategies, financial management, quality control, and safety, and computer applications. Lecture, field trip. Prerequisites: CEE 321, 351, 372.

CEE 483 Highway Materials, Construction, and Quality. (3)
fall and spring
Properties of highway materials including aggregates, asphalt concrete, and portland cement concrete; construction practice; material delivery, placement, and compaction; quality control. Lecture, field trip. Prerequisites: CEE 321, 351, 372; ECE 351, 380.

CEE 486 Integrated Civil Engineering Design. (3)
fall and spring
Students are required to complete a civil engineering design in a simulated practicing engineering environment. Limited to undergraduates in their final semester. Lecture, team learning. Prerequisites: CEE 321, 341, 351, 361, 372. General Studies: L

CEE 512 Pavement Performance and Management. (3)
not regularly offered
Pavement management systems, including data collection, evaluation, optimization, economic analysis, and computer applications for highway and airport design. Prerequisite: instructor approval.

CEE 514 Bituminous Materials and Mixture. (3)
not regularly offered
Types of bituminous materials used in pavement mixtures. Chemical composition, physical properties, desirable aggregate characteristics, optimum asphalt contents, superpave asphalt binder, mixture design. Lecture, lab. Prerequisite: ECE 351.
CEE 515 Properties of Concrete. (3)
not regularly offered

CEE 521 Stress Analysis. (3)
fall
Advanced topics in the analytical determination of stress and strain. Prerequisite: CEE 321.

CEE 524 Advanced Steel Structures. (3)
fall

CEE 526 Finite Element Methods in Civil Engineering. (3)
fall
Finite element formulation for solutions of structural, geotechnical, and hydraulic problems. Prerequisite: CEE 432.

CEE 527 Advanced Concrete Structures. (3)
not regularly offered

CEE 530 Prestressed Concrete. (3)
not regularly offered

CEE 533 Structural Optimization. (3)
not regularly offered
Linear and nonlinear programming. Problem formulation. Constrained and unconstrained optimization. Sensitivity analysis. Approximate techniques. FEM-based optimal design of mechanical and aerospace structures. Cross-listed as MAE 521. Credit is allowed for only CEE 533 or MAE 521. Prerequisite: instructor approval.

CEE 536 Structural Dynamics. (3)
not regularly offered
Structures and structural members subjected to dynamic loadings, response spectra theory applications to bridges and power plants, investigations of the responses of multidegree of freedom structures, and matrix and numerical methods of analysis. Lecture, recitation. Prerequisites: CEE 321; instructor approval.

CEE 537 Topics in Structural Engineering. (1–3)
not regularly offered
Advanced topics, including nonlinear structural analysis, experimental stress analysis, advanced finite elements, plasticity and viscoelasticity, composites, and damage mechanics. Prerequisite: instructor approval.

CEE 540 Groundwater Hydrology. (3)
fall
Physical properties of aquifers, well pumping, subsurface flow modeling, unsaturated flow, numerical methods, land subsidence, and groundwater pollution. Prerequisite: CEE 440 or instructor approval.

CEE 541 Surface Water Hydrology. (3)
spring
Hydrologic cycle and mechanisms, including precipitation, evaporation, and transpiration; hydrograph analysis; flood routing; statistical methods in hydrology and hydrologic design. Prerequisite: CEE 440 or instructor approval.

CEE 543 Water Resources Systems. (3)
not regularly offered
Theory and application of quantitative planning methodologies for the design and operation of water resources systems; class projects using a computer; case studies. Prerequisite: instructor approval.

CEE 546 Free Surface Hydraulics. (3)
not regularly offered
Derivation of 1-dimensional equations used in open channel flow analysis; computations for uniform and nonuniform flows, unsteady flow, and flood routing. Mathematical and physical models. Prerequisite: CEE 341.

CEE 547 Principles of River Engineering. (3)
not regularly offered
Uses of rivers, study of watershed, and channel processes. Sediment sources, yield, and control; hydrologic analysis. Case studies. Prerequisite: CEE 341 or instructor approval.

CEE 548 Sedimentation Engineering. (3)
not regularly offered
Introduction to the transportation of granular sedimentary materials by moving fluids. Degradation, aggregation, and local scour in alluvial channels. Mathematical and physical models. Prerequisite: CEE 547 or instructor approval.

CEE 550 Soil Behavior. (3)
not regularly offered
Physicochemical aspects of soil behavior, stabilization of soils, and engineering properties of soils. Prerequisite: CEE 351.

CEE 551 Advanced Geotechnical Testing. (3)
not regularly offered
Odometer, triaxial (static and cyclic) back pressure saturated and unsaturated samples, pore pressure measurements, closed-loop computer-controlled testing, in-situ testing, and sampling. Lecture, lab. Prerequisite: CEE 351.

CEE 552 Geological Engineering. (3)
not regularly offered
Geological investigations for engineering purposes, case histories, geologic structure, weathering, remote sensing, geophysics, and air photo interpretation for engineering site locations. Lecture, field trips. Prerequisite: CEE 351.

CEE 553 Advanced Soil Mechanics. (3)
not regularly offered
Application of theories of elasticity and plasticity to soils, theories of consolidation, failure theories, and response to static and dynamic loading. Prerequisite: CEE 351.

CEE 554 Shear Strength and Slope Stability. (3)
not regularly offered
Shear strength of saturated and unsaturated soils strength-deformation relationships, time-dependent strength parameters, effects of sampling, and advanced slope stability. Prerequisite: CEE 351.

CEE 555 Advanced Foundations. (3)
not regularly offered
Deep foundations, braced excavations, anchored bulkheads, reinforced earth, and underpinning. Prerequisite: CEE 351.

CEE 557 Hazardous Waste: Site Assessment and Mitigation Measures. (3)
not regularly offered
Techniques for hazardous waste site assessment and mitigation. Case histories presented by instructor and guest speakers. Prerequisites: graduate standing; instructor approval.

CEE 559 Earthquake Engineering. (3)
not regularly offered
Characteristics of earthquake motions, selection of design earthquakes, site response analyses, seismic stability, and liquefaction. Prerequisite: CEE 351.

CEE 560 Soil and Groundwater Remediation. (3)
fall
Techniques for remediation of contaminated soils and groundwaters are presented with basic engineering principles. Prerequisite: instructor approval.

CEE 561 Physical-Chemical Treatment of Water and Waste. (3)
fall
Theory and design of physical and chemical processes for the treatment of water and wastewaters. Prerequisite: CEE 361.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
Computer science and computer engineering deal with the study, design, construction, and application of modern computing machinery. Other important topics include computing techniques and appropriate languages for general information processing; for scientific computation; for the recognition, storage, retrieval, and processing of data of all kinds; and for the automatic control and simulation of processes.

The curricula offered by the Department of Computer Science and Engineering prepare the student to be a participant in this rapidly changing area of technology by presenting in-depth treatments of the fundamentals of computer science and computer engineering. The department offers two undergraduate degrees: a B.S. degree in Computer Science and a B.S.E. degree in Computer Systems Engineering. The following are shared objectives of the degree programs:

1. Graduates will understand current trends in information technology and be able to apply their understanding in the distributed management of information.
2. Graduates can apply the underlying principles of computer science, including mathematical and physical sciences and engineering principles.
3. Graduates will know and be able to apply system development processes, using modern tools, from the component level to the system level.
4. Graduates also will have the skills required to communicate effectively in both technical and nontechnical settings, to work effectively in teams and in a multicultural environment, to work ethically and professionally, and continue to learn independently and grow intellectually.
The Computer Systems Engineering program has the specific objective that its graduates will have the technical expertise necessary to analyze requirements and to design and implement effective solutions to problems that require the integration of hardware and software. The Computer Science program has the specific objective that its graduates will have the technical expertise necessary to analyze requirements, design, and implement effective solutions using computer science for a broad range of problems. The department strives to maintain a modern learning environment that fosters excellence, cooperation, and scholarship for faculty, students, and staff.

ADMISSION REQUIREMENTS

The admission standards for the undergraduate Computer Science and Computer Systems Engineering degree programs are currently under review and may be changing for fall 2001–spring 2002. For more information, visit the Computer Science and Engineering Advising Center in GWC 302, or call 480/965-3199 for current admission standards.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is required for the B.S. degree in Computer Science and the B.S.E. degree in Computer Systems Engineering. A minimum of 50 upper-division semester hours is required. In addition to the requirement for a cumulative GPA of 2.00 or higher, all computer science and computer systems engineering students must obtain a minimum grade of “C” in all CSE courses used for degree credit.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

DEGREES

Computer Science—B.S.

The faculty in the Department of Computer Science and Engineering offer a B.S. degree that prepares the student for a career in computer science. A student pursuing a B.S. degree must complete the First-Year Composition requirement, the General Studies requirement, department degree requirements, the computer science core courses, a senior-level breadth requirement in the major, technical electives, and unrestricted electives. For more information, visit the department in GWC 206, call 480/965-3190, send e-mail to cse.graduate.office@asu.edu, or access the department’s Website at cse.asu.edu.

The following table specifies departmental requirements for the B.S. degree in Computer Science.

First-Year Composition

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 101 First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENG 102 First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>ENG 105 Advanced First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>HU/SB elective chosen with an advisor</td>
<td>3</td>
</tr>
<tr>
<td>ENG 107 English for Foreign Students</td>
<td>3</td>
</tr>
<tr>
<td>ENG 108 English for Foreign Students</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

General Studies/Department Requirements

Humanities and Fine Arts/Social and Behavioral Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU/SB electives</td>
<td>18</td>
</tr>
</tbody>
</table>

Literacy and Critical Inquiry

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>L elective</td>
<td>3</td>
</tr>
<tr>
<td>ECE 400 Engineering Communications</td>
<td>3</td>
</tr>
<tr>
<td>or approved CSE L course</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

Natural Sciences/Basic Sciences

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 121 University Physics I: Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>PHY 122 University Physics Laboratory I</td>
<td>1</td>
</tr>
<tr>
<td>PHY 131 University Physics II: Electricity and Magnetism</td>
<td>3</td>
</tr>
<tr>
<td>PHY 132 University Physics Laboratory II</td>
<td>1</td>
</tr>
<tr>
<td>Science elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
</tr>
</tbody>
</table>

Mathematical Studies

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 380 Probability and Statistics for Engineering Problem Solving</td>
<td>3</td>
</tr>
<tr>
<td>MAT 243 Discrete Mathematical Structures</td>
<td>3</td>
</tr>
<tr>
<td>MAT 270 Calculus with Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MAT 271 Calculus with Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MAT 272 Calculus with Analytic Geometry</td>
<td>4</td>
</tr>
<tr>
<td>MAT 342 Linear Algebra</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
</tr>
</tbody>
</table>

General Studies/department requirement total | 57 |

Computer Science Core

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 120 Digital Design Fundamentals</td>
<td>3</td>
</tr>
<tr>
<td>CSE 200 Concepts of Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CSE 210 Object-Oriented Design and Data Structures</td>
<td>3</td>
</tr>
<tr>
<td>CSE 225 Assembly Language Programming and Microprocessors (Motorola)</td>
<td>4</td>
</tr>
<tr>
<td>or CSE 226 Assembly Language Programming and Microprocessors (Intel)</td>
<td>4</td>
</tr>
<tr>
<td>CSE 240 Introduction to Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CSE 310 Data Structures and Algorithms</td>
<td>3</td>
</tr>
<tr>
<td>CSE 330 Computer Organization and Architecture</td>
<td>3</td>
</tr>
<tr>
<td>CSE 340 Principles of Programming Languages</td>
<td>3</td>
</tr>
<tr>
<td>CSE 355 Introduction to Theoretical Computer Science</td>
<td>3</td>
</tr>
<tr>
<td>CSE 360 Introduction to Software Engineering</td>
<td>3</td>
</tr>
<tr>
<td>CSE 430 Operating Systems</td>
<td>3</td>
</tr>
<tr>
<td>Total computer science core</td>
<td>34</td>
</tr>
</tbody>
</table>

Technical electives | 18 |

400-level CSE computer science breadth requirement | 18 |

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
Unrestricted electives .. 7
Total ... 31
Total degree requirements ... 128

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 Each student must complete a four-credit laboratory science course for majors in the discipline that satisfies the SQ portion of the General Studies requirement. See an advisor for approved listing.
4 Each student must complete six hours of courses chosen from the computer science technical elective list and approved by the student’s advisor. See an advisor for approved listing.

Computer Science
Program of Study
Typical Four-Year Sequence

First Year

First Semester
CSE 200 Concepts of Computer Science CS 3
ENG 101 First-Year Composition 3
MAT 270 Calculus with Analytic Geometry I MA 4
HU/SB and awareness area course 1 3
Unrestricted elective ... 3
Total .. 16

Second Semester
CSE 120 Digital Design Fundamentals 3
CSE 210 Object-Oriented Design and Data Structures CS 3
ENG 102 First-Year Composition 3
MAT 271 Calculus with Analytic Geometry II MA 4
Unrestricted elective ... 4
Total .. 17

Second Year

First Semester
CSE 240 Introduction to Programming Languages 3
MAT 243 Discrete Mathematical Structures 3
MAT 272 Calculus with Analytic Geometry III MA 4
PHY 121 University Physics I: Mechanics SQ 1 3
PHY 122 University Physics Laboratory I SQ 3 3
HU/SB and awareness area course 1 3
Total .. 17

Second Semester
CSE 225 Assembly Language Programming and
Microprocessors (Motorola) 4
CSE 310 Data Structures and Algorithms 3
PHY 131 University Physics II: Electricity and
Magnetism SQ 3 .. 3
PHY 132 University Physics Laboratory II SQ 3 1
HU/SB and awareness area course 1 3
L elective ... 3
Total .. 17

Third Year

First Semester
CSE 330 Computer Organization and Architecture 3
CSE 340 Principles of Programming Languages 3
MAT 342 Linear Algebra 3
HU/SB and awareness area course 1 3
Laboratory science for engineering majors SQ 3 4
Total .. 16

Second Semester
CSE 355 Introduction to Theoretical Computer Science 3
CSE 360 Introduction to Software Engineering 3
CSE 430 Operating Systems 3
ECE 380 Probability and Statistics for Engineering Problem
Solving CS ... 3
HU/SB and awareness area course 1 3
Total .. 15

Fourth Year

First Semester
ECE 400 Engineering Communications L 3
or approved CSE L course (3)
Technical elective .. 3
400-level CSE computer science breadth electives 9
Total .. 15

Second Semester
400-level CSE computer science breadth electives 9
HU/SB and awareness area course 1 3
Technical elective .. 3
Total .. 15

1 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU and SB requirements.
2 Both PHY 121 and 122 must be taken to secure SQ credit.
3 Both PHY 131 and 132 must be taken to secure SQ credit.
4 Each student must complete a four-credit laboratory science course for majors in the discipline that satisfies the SQ portion of the General Studies requirement. See an advisor for approved listing.

Computer Systems Engineering—B.S.E.

The Department of Computer Science and Engineering offers a B.S.E. degree that prepares the student for a career in computer systems engineering. This degree program provides training in both computer and computer science. The following table specifies departmental requirements for the B.S.E. degree in Computer Systems Engineering.

First-Year Composition
Choose among the course combinations below 6
ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)
ENG 105 Advanced First-Year Composition (3)
HU/SB elective chosen with an advisor (3)
ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)
Total .. 6

General Studies/Department Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
ECN 111 Macroeconomic Principles SB 3
or ECN 112 Microeconomic Principles SB (3)
HU and SB electives .. 12
Total .. 15

Literacy and Critical Inquiry
CSE 423 Microcomputer System Hardware L 3
or CSE 438 Systems Programming L (3)
ECE 300 Intermediate Engineering Design L 3
Total .. 6
Natural Sciences/Basic Sciences
CHM 114 General Chemistry for Engineers SQ4
 or CHM 116 General Chemistry SQ (4)
PHY 121 University Physics I: Mechanics SQ13
PHY 122 University Physics Laboratory I SQ11
PHY 131 University Physics II: Electricity and
 Magnetism SQ2 ..3
PHY 132 University Physics Laboratory II SQ21
PHY 361 Introductory Modern Physics3
Total ...15

Mathematical Studies
MAT 243 Discrete Mathematical Structures3
MAT 270 Calculus with Analytic Geometry I MA4
MAT 271 Calculus with Analytic Geometry II MA4
MAT 272 Calculus with Analytic Geometry III MA4
MAT 274 Elementary Differential Equations MA3
MAT 342 Linear Algebra ..3
Total ...21

General Studies/department requirement total57

Engineering Core
CSE 200 Concepts of Computer Science CS3
CSE 225 Assembly Language Programming and
 Microprocessors (Motorola) ...4
ECE 100 Introduction to Engineering Design CS4
ECE 201 Electrical Networks I ..4
ECE 210 Engineering Mechanics I: Statics3
ECE 334 Electronic Devices and Instrumentation4
Total ...22

Computer Science Core
CSE 120 Digital Design Fundamentals3
CSE 210 Object-Oriented Design and Data Structures CS3
CSE 240 Introduction to Programming Languages3
CSE 310 Data Structures and Algorithms3
CSE 330 Computer Organization and Architecture3
CSE 340 Principles of Programming Languages3
CSE 355 Introduction to Theoretical Computer Science3
CSE 360 Introduction to Software Engineering3
CSE 421 Microprocessor System Design I4
CSE 422 Microprocessor System Design II4
CSE 430 Operating Systems ...3
ECE 380 Probability and Statistics for Engineering Problem
 Solving CS ..3
Technical electives3 ..5
Total ...43

Degree requirement total ..128

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 Each student must complete five hours of courses chosen from
 the computer science technical elective list and approved by the
 student’s advisor. See an advisor for approved listing.

Computer Systems Engineering
Program of Study
Typical Four-Year Sequence
First Year
CSE 200 Concepts of Computer Science CS3
or CSE 120 Digital Design Fundamentals (3)
ECE 100 Introduction to Engineering Design CS4
CSE 225 Assembly Language Programming and
 Microprocessors (Motorola) ...4
ECE 100 Introduction to Engineering Design CS4
CSE 330 Computer Organization and Architecture3
CSE 340 Principles of Programming Languages3
CSE 355 Introduction to Theoretical Computer Science3
CSE 360 Introduction to Software Engineering3
CSE 421 Microprocessor System Design I4
CSE 422 Microprocessor System Design II4
CSE 430 Operating Systems ...3
ECE 380 Probability and Statistics for Engineering Problem
 Solving CS ..3
Technical electives3 ..5
Total ...43

Second Year
First Semester
CSE 225 Assembly Language Programming and
 Microprocessors (Motorola) ...4
MAT 243 Discrete Mathematical Structures3
MAT 270 Calculus with Analytic Geometry I MA4
MAT 271 Calculus with Analytic Geometry II MA4
MAT 274 Elementary Differential Equations MA3
MAT 342 Linear Algebra ..3
Total ...22

Second Semester
CSE 240 Introduction to Programming Languages3
CSE 330 Computer Organization and Architecture3
ECE 210 Engineering Mechanics I: Statics3
ECE 300 Intermediate Engineering Design L3
MAT 274 Elementary Differential Equations MA3
PHY 131 University Physics II: Electricity and
 Magnetism SQ2 ..3
PHY 132 University Physics Laboratory II SQ21
Total ...16

Third Year
First Semester
CSE 310 Data Structures and Algorithms3
CSE 421 Microprocessor System Design I4
CSE 422 Microprocessor System Design II4
CSE 430 Operating Systems ...3
ECE 380 Probability and Statistics for Engineering Problem
 Solving CS ..3
Technical electives3 ..5
Total ...43

Second Semester
CSE 340 Principles of Programming Languages3
CSE 360 Introduction to Software Engineering3
ECE 380 Probability and Statistics for Engineering Problem
 Solving CS ..3
PHY 361 Introductory Modern Physics3
HU/ SB and awareness area course33
Total ...16

Fourth Year
First Semester
CSE 355 Introduction to Theoretical Computer Science3
CSE 422 Microprocessor System Design II4
CSE 430 Operating Systems ...3
ECE 201 Electrical Networks I ...4
ECE 201 Electrical Networks I ...4
HU/ SB and awareness area course33
Total ...17

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation
requirements, see “Classification of Courses,” page 51.
COMPUTER SCIENCE AND ENGINEERING (CSE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Requirement</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSE 100</td>
<td>Principles of Programming with C++</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 100 or 110 or one year of high school programming with Java or C++</td>
</tr>
<tr>
<td>CSE 110</td>
<td>Principles of Programming with Java</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 110 or 120 or one year of high school programming with Java or C++</td>
</tr>
<tr>
<td>CSE 120</td>
<td>Digital Design Fundamentals</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 100 or 110 or one year of high school programming with Java or C++</td>
</tr>
<tr>
<td>CSE 180</td>
<td>Computer Literacy</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 181</td>
<td>Applied Problem Solving with Visual BASIC</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 183</td>
<td>Applied Problem Solving with FORTRAN</td>
<td>(3)</td>
<td>General Studies: CS</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 185</td>
<td>Internet and the World Wide Web</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 200</td>
<td>Concepts of Computer Science</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 210</td>
<td>Object-Oriented Design and Data Structures</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 215</td>
<td>Database Management</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 220</td>
<td>Assembly Language Programming and Microprocessors (Motorola).</td>
<td>(4)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 226</td>
<td>Assembly Language Programming and Microprocessors (Intel).</td>
<td>(4)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 240</td>
<td>Introduction to Programming Languages</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 310</td>
<td>Data Structures and Algorithms</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 330</td>
<td>Computer Organization and Architecture</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 340</td>
<td>Principles of Programming Languages</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 350</td>
<td>Introduction to Theoretical Computer Science</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 360</td>
<td>Introduction to Software Engineering</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 408</td>
<td>Multimedia Information Systems</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 412</td>
<td>Database Management</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 420</td>
<td>Computer Architecture</td>
<td>(3)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 421</td>
<td>Microprocessor System Design I.</td>
<td>(4)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
<tr>
<td>CSE 422</td>
<td>Microprocessor System Design II.</td>
<td>(4)</td>
<td>-</td>
<td>CSE 120 or EEE 120</td>
</tr>
</tbody>
</table>

1. Both PHY 121 and 122 must be taken to secure SQ credit.
2. Both PHY 131 and 132 must be taken to secure SQ credit.
3. Engineering students may not use aerospace studies (AES) or military science (MIS) courses to fulfill HU and SB requirements.
CSE 423 Microcomputer System Hardware. (3)

Information and techniques presented in CSE 422 are used to develop the hardware design of a multiprocessor, multiprogramming, microprocessor-based system. Prerequisite: CSE 422.

CSE 428 Computer-Aided Processes. (3)

not regularly offered

Hardware and software considerations for computerized manufacturing systems. Specific concentration on automatic inspection, numerical control, robotics, and integrated manufacturing systems. Prerequisite: CSE 330.

CSE 430 Operating Systems. (3)

fall and spring

Operating system structure and services, processor scheduling, concurrent processes, synchronization techniques, memory management, virtual memory, input/output, storage management, and file systems. Prerequisites: CSE 330, 340.

CSE 434 Computer Networks. (3)

fall and spring

Cryptography fundamentals; data compression; error handling; flow control; multiphop routing; network protocol algorithms; network reliability, timing, security, physical layer basics. Prerequisite: CSE 330.

CSE 438 Systems Programming. (3)

once a year

Design and implementation of systems programs, including text editors, file utilities, monitors, assemblers, relocating linking loaders, I/O handlers, and schedulers. Prerequisite: CSE 421 or instructor approval.

CSE 440 Compiler Construction I. (3)

once a year

Introduction to programming language implementation. Implementation strategies such as compilation, interpretation, and translation. Major compilation phases such as lexical analysis, semantic analysis, optimization, and code generation. Prerequisites: CSE 340, 355.

CSE 445 Distributed Computing with Java and CORBA. (3)

fall and spring

Frameworks for distributed software components. Foundations of client-server computing and architectures for distributed object systems. Dynamic discovery and invocation. Lecture, projects. Prerequisite: CSE 360 or instructor approval.

CSE 446 Client-Server User Interfaces. (3)

spring

Client-server model and its use in creating and managing window interfaces. Toolkits and libraries including X11, Microsoft Foundation Classes, and Java Abstract Window Toolkit. Lecture, projects. Prerequisite: CSE 310 or instructor approval.

CSE 450 Design and Analysis of Algorithms. (3)

fall and spring

Design and analysis of computer algorithms using analytical and empirical methods; complexity measures, design methodologies, and survey of important algorithms. Prerequisite: CSE 310.

CSE 457 Theory of Formal Languages. (3)

once a year

Theory of grammar, methods of syntactic analysis and specification, types of artificial languages, relationship between formal languages, and automata. Prerequisite: CSE 355.

CSE 459 Logic for Computing Scientists. (3)

not regularly offered

Propositional logic, syntax and semantics, proof theory versus model theory, soundness, consistency and completeness, first order logic, logical theories, automated theorem proving, ground resolution, pattern matching unification and resolution, Dijkstra’s logic, proof obligations, and program proving. Prerequisite: CSE 355.

CSE 460 Software Analysis and Design. (3)

fall and spring

Requirements analysis and design; architecture and patterns; representations of software; formal methods; component-based development. Lecture, projects. Prerequisite: CSE 360.

CSE 461 Software Engineering Project I. (3)

fall and spring

First of two-course software team-development sequence. Planning, management, design, and implementation using object-oriented technology, CASE tools, CMM-level-5 guidelines. Lecture, lab, oral and written communications. Prerequisite: CSE 350.

CSE 462 Software Engineering Project II. (3)

fall and spring

Second of two-course software team-development sequence. Software evolution, maintenance, reengineering, reverse engineering, component-based development, and outsourcing. Lecture, lab, oral and written communications. Prerequisite: CSE 461.

CSE 470 Computer Graphics. (3)

fall and spring

Display devices, data structures, transformations, interactive graphics, 3-dimensional graphics, and hidden line problem. Prerequisites: CSE 310; MAT 342.

CSE 471 Introduction to Artificial Intelligence. (3)

fall and spring

State space search, heuristics, expert systems, and automated reasoning. Prerequisites: CSE 240, 310.

CSE 473 Nonprocedural Programming Languages. (3)

not regularly offered

Functional and logic programming using languages like Lisp and Prolog. Typical applications would be a Screen Editor and an Expert System. Prerequisite: CSE 355.

CSE 476 Introduction to Natural Language Processing. (3)

not regularly offered

Principles of computational linguistics, formal syntax, and semantics, as applied to the design of software with natural (human) language l/O. Prerequisite: CSE 310 or instructor approval.

CSE 477 Introduction to Computer-Aided Geometric Design. (3)

once a year

Introduction to parametric curves and surfaces, Bezier and B-spline interpolation, and approximation techniques. Prerequisites: CSE 210, 470; MAT 342.

CSE 507 Virtual Reality Systems. (3)

not regularly offered

Computer generated 3D environments, simulation of reality, spatial presence of virtual objects, technologies of immersion, tracking systems. Lecture, lab. Prerequisite: CSE 408 or 470 or 508 or instructor approval.

CSE 508 Digital Image Processing. (3)

once a year

Digital image fundamentals, image transforms, image enhancement and restoration techniques, image encoding, and segmentation methods. Prerequisite: EEE 303 or instructor approval.

CSE 510 Database Management System Implementation. (3)

once a year

Implementation of database systems. Data storage, indexing, querying, and retrieval. Query optimization and execution, concurrency control, and transaction management. Prerequisite: CSE 412.

CSE 512 Distributed Database Systems. (3)

once a year

Distributed database design, query processing, and transaction processing. Distributed database architectures and interoperability. Emerging technology. Prerequisite: CSE 412.

CSE 513 Rules in Database Systems. (3)

not regularly offered

CSE 514 Object-Oriented Database Systems. (3)

not regularly offered

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
CSE 517 Hardware Design Languages. (3)
Introduction to hardware design languages. Modeling concepts for specification, simulation, and synthesis. Prerequisite: CSE 423 or EEE 425 or instructor approval.

CSE 518 Synthesis with Hardware Design Languages. (3)
Modeling VLSI design in hardware design languages for synthesis. Transformation of language-based designs to physical layout. Application of synthesis tools. Prerequisite: CSE 517.

CSE 520 Computer Architecture II. (3)
Computer architecture description languages, computer arithmetic, memory-hierarchy design, parallel, vector, multiprocessors, and input/output. Prerequisites: CSE 420, 430.

CSE 521 Microprocessor Applications. (4)
Microprocessor technology and its application to the design of practical digital systems. Hardware, assembly language programming, and interfacing of microprocessor-based systems. Lecture, lab. Prerequisite: CSE 421.

CSE 523 Microcomputer Systems Software. (3)
Developing system software for a multiprocessor, multiprogramming, microprocessor-based system using information and techniques presented in CSE 421, 422. Prerequisite: CSE 422.

CSE 526 Parallel Processing. (3)
Real and apparent concurrency. Hardware organization of multiprocessors, multiple computer systems, scientific attached processors, and other parallel systems. Prerequisite: CSE 330 or 423.

CSE 530 Operating System Internals. (3)
Implementation of process management and synchronization, system call and interrupt handling, memory management, device drivers and file systems in UNIX. Prerequisites: CSE 430; knowledge of C language.

CSE 531 Distributed and Multiprocessor Operating Systems. (3)
Distributed systems architecture, remote file access, message-based systems, object-based systems, client/server paradigms, distributed algorithms, replication and consistency, and multiprocessor operating systems. Prerequisite: CSE 530 or instructor approval.

CSE 532 Advanced Operating System Internals. (3)
Memory, processor, process and communication management, and concurrency control in the Windows NT multiprocessor and distributed operating system kernels and servers. Prerequisites: CSE 530, 531 (or 536).

CSE 534 Advanced Computer Networks. (3)
Advanced network protocols and infrastructure, applications of high-performance networks to distributed systems, high-performance computing and multimedia domains, special features of networks. Prerequisite: CSE 434.

CSE 536 Theory of Operating Systems. (3)
Protection, Communication and synchronization in distributed systems, distributed file systems, deadlock theory, virtual memory theory, and uniprocessor and multiprocessor thread management. Prerequisite: CSE 430.

CSE 537 ATM Network Design. (3)
Principles of ATM networks, switch architecture, traffic management, call and connection control, routing, internetworking with ATM networks, signaling, and QAM. Prerequisite: CSE 434.

CSE 539 Applied Cryptography. (3)
Use of cryptography for secure protocols over networked systems, including signatures, certificates, timestamps, electrons, digital cash, and other multiparty coordination. Prerequisite: CSE 310 or instructor approval.

CSE 540 Compiler Construction II. (3)
not regularly offered
Formal parsing strategies, optimization techniques, code generation, extensibility and transportability considerations, and recent developments. Prerequisite: CSE 440.

CSE 545 Programming Language Design. (3)
not regularly offered
Language constructs, extensibility and abstractions, and runtime support. Language design process. Prerequisite: CSE 440.

CSE 550 Combinatorial Algorithms and Intractability. (3)
not regularly offered
Combinatorial algorithms, nondeterministic algorithms, classes P and NP, NP-hard and NP-complete problems, and intractability. Design techniques for fast combinatorial algorithms. Prerequisite: CSE 450.

CSE 555 Theory of Computation. (3)
Computational limits of regular languages, context-free languages, Turing machines and decidability, reducibility, and other advanced topics in computability theory. Prerequisite: CSE 355 or instructor approval.

CSE 556 Expert Systems. (3)
Knowledge acquisition and representation, rule-based systems, frame-based systems, validation of knowledge bases, inexact reasoning, and expert database systems. Prerequisite: CSE 471.

CSE 562 Software Process Automation. (3)
Representing the software process; creating a measured and structured working environment; using, constructing, and adapting component-based tools. Prerequisite: CSE 360.

CSE 563 Software Requirements and Specification. (3)
Examines the definitional stage of software development; analysis of specification representations, formal methods, and techniques emphasizing important application issues. Prerequisite: CSE 460.

CSE 564 Software Design. (3)
Examines software design issues and techniques. Includes a survey of design representations and a comparison of design methods. Prerequisite: CSE 460.

CSE 565 Software Verification, Validation, and Testing. (3)
Examines software design issues and techniques. Includes a survey of design representations and a comparison of design methods. Prerequisite: CSE 460.

CSE 566 Software Project, Process, and Quality Management. (3)
Project management, risk management, configuration management, quality management, and simulated project management experiences. Prerequisite: CSE 360.

CSE 570 Advanced Computer Graphics I. (3)

CSE 571 Artificial Intelligence. (3)
Definitions of intelligence, computer problem solving, game playing, pattern recognition, theorem proving, and semantic information processing; evolutionary systems; heuristic programming. Prerequisite: CSE 471.

CSE 573 Advanced Computer Graphics II. (3)
Modeling of natural phenomena: terrain, clouds, fire, water, and trees. Particle systems, deformation of solids, antialiasing, and volume visualization. Lecture, lab. Prerequisite: CSE 470.

CSE 574 Planning and Learning Methods in AI. (3)
Reasoning about time and action, plan synthesis and execution, improving planning performance, applications to manufacturing intelligent agents. Prerequisite: CSE 471 (or its equivalent).
CSE 575 Decision-Making Strategies in AI. (3)
not regularly offered
Automatic knowledge acquisition, automatic analysis/synthesis of
strategies, distributed planning/problem solving, causal modeling, pre-
dictive human-machine environments. Prerequisite: CSE 471 or 571
(or its equivalent).

CSE 576 Topics in Natural Language Processing. (3)
not regularly offered
Comparative parsing strategies, scoping and reference problems,
nonfirst-order logical semantic representations, and discourse struc-
ture. Prerequisite: CSE 476 or instructor approval.

CSE 577 Advanced Computer-Aided Geometric Design I. (3)
once a year
General interpolation; review of curve interpolation and approximation;
spline curves; visual smoothness of curves; parameterization of
curves; introduction to surface interpolation and approximation. Pre-
quisites: both CSE 470 and 477 or only instructor approval.

CSE 578 Advanced Computer-Aided Geometric Design II. (3)
not regularly offered
Coons patches and Bezier patches; triangular patches; arbitrarily
located data methods; geometry processing of surfaces; higher
dimensional surfaces. Prerequisites: both CSE 470 and 477 or only
instructor approval.

CSE 579 NURBS: Nonuniform Rational B-Splines. (3)
not regularly offered
Projective geometry, NURBS-based modeling, basic theory of conics
rational Bezier curves, rational B-splines, surfaces, rational sur-
faces, stereographic maps, quadrics, IGES data specification. Prereq-
isites: CSE 470, 477.

CSE 593 Applied Project. (1–12)
not regularly offered

CSE 598 Special Topics. (1–4)
not regularly offered

Department of Electrical Engineering
Stephen M. Goodnick
Chair
(ENGRC 552) 480/965-3424
www.eas.asu.edu/ee

REGENTS' PROFESSORS
BALANIS, FERRY

PROFESSORS
BACKUS, CROUCH, EL-GHAZALY, GOODNICK, GORUR,
HEYDT, HIGGINS, HOPPENSTEADT, HUI, KARADY,
KOZICKI, PALAIS, PAN, ROEDEL, SCHRODER, SI,
SPANIAS, THORNTON, Y. ZHANG

ASSOCIATE PROFESSORS
ABERLE, ALLEE, BIRD, CHAKRABARTI, COCHRAN,
EL-SHARAWY, GREENEICH, GRONDIN, HOLBERT, KIM,
LAJ, MORRELL, RODRIGUEZ, SHEN, SKROMME,
TSAKALIS, TYLAVSKY

ASSISTANT PROFESSORS
AYYANAR, CAPONE, DUMAN, JOO, KARAM,
PAPANDREOU-SUPPAPPOLA, REISSLEIN,
VASILESKA, YAZDI, J. ZHANG

The professional activities of electrical engineers directly
affect the everyday lives of most of the world’s population.

They are responsible for the design and development of
radio and television transmitters and receivers, telephone
networks and switching systems, computer systems, and
electric power generation and distribution. Within the broad
scope of these systems, the electrical engineer is concerned
with a challenging and diverse array of design and development
problems.

Electrical engineers design minuscule semiconductor
tegrated circuits that contain many thousands of elementary
devices. These engineers design systems for automatically
controlling mechanical devices and a variety of processes.
These engineers are responsible for the design of
satellite communication links as well as patient monitoring
systems for hospitals. The development of the microproces-
sor has expanded the opportunities for electrical engineers
to improve the design of familiar products since these
devices are now incorporated in automobiles, consumer and
office products, entertainment systems, and a vast variety of
test and measurement instruments and machine tools.

Students who earn a B.S.E. degree in Electrical Engineer-
ing will be involved in a variety of electrical and electronic
problems in the course of their careers. To ensure the neces-
sary breadth of knowledge, the Electrical Engineering cur-
riculum includes basic (core) engineering courses and
courses in networks and electronic circuits, electromagnetic
fields and waves, microprocessors, communication and control
systems, solid-state electronics, electrical power systems,
and other specialty courses.

ELECTRICAL ENGINEERING—B.S.E.

The goal of the Electrical Engineering undergraduate pro-
gram is to prepare the graduates for entry-level positions as
electrical engineers for the broad range of opportunities
available in industrial, commercial, and governmental organ-
zations, and to prepare the graduates for continued learning
experiences either in a formal graduate program or in
continuing education applications.

The curriculum in Electrical Engineering builds upon the
base provided by the engineering core. Beyond the engi-
neering core, the curriculum includes a number of required
electrical engineering and technical elective courses.
Approved technical elective courses serve to provide stu-
dents with an opportunity either to broaden their back-
ground in electrical engineering or to study, in greater
deepth, technical subjects in which they have special inter-
est. Successful completion of the curriculum leaves the
student prepared to embark on a career in electrical engineer-
ing or to pursue advanced education in graduate school.

The engineering design experience is structured around
four backbone courses employing engineering teams: ECE
100 Introduction to Engineering Design (freshman year),
ECE 300 Intermediate Engineering Design (junior year),
EEE 491 Senior Design Laboratory I, and EEE 492 Senior
Design Laboratory II. The integrated experience is strength-
ened with required courses: EEE 120 Digital Design Funda-
mentals, EEE 225 Assembly Language Programming and
Microprocessors (Motorola), EEE 226 Assembly Language
Programming and Microprocessors (Intel), EEE 303 Signals
and Systems, and EEE 360 Energy Conversion and Trans-
port. Students focus on design pertaining to specific

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation
requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed
in this catalog, see “Classification of Courses,” page 51.
electrical engineering areas in their senior technical electives before the culminating, capstone design experience in EEE 488 and EEE 489.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Electrical Engineering. A minimum of 50 upper-division semester hours is required.

GRADUATION REQUIREMENTS

A student must earn a grade of “C” or higher in the mathematics and physics courses listed in the program of study. Each mathematics and physics course in the program of study must be completed with a “C” or higher before enrolling in any course that requires that mathematics or physics course as a prerequisite. The student must also have an overall GPA of at least 2.00 for the following group of courses: CSE 100; ECE 201, 300, 334, 352; all courses with an EEE prefix; and all other courses used as technical electives.

In addition to fulfilling school and major requirements, students must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

COURSE REQUIREMENTS

The specific course requirements for the B.S.E. degree in Electrical Engineering follow.

First-Year Composition

Choose among the course combinations below: 6

- ENG 101 First-Year Composition (3)
- ENG 102 First-Year Composition (3)
- ENG 105 Advanced First-Year Composition (3)
- Elective (requires departmental approval) (3)
- ENG 107 English for Foreign Students (3)
- ENG 108 English for Foreign Students (3)

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences

ECN 111 Macroeconomic Principles SB 3
or ECN 112 Microeconomic Principles SB (3)

HU courses ... 6–9
SB course(s) .. 3–6

Minimum total .. 15

Literacy and Critical Inquiry

ECE 300 Intermediate Engineering Design L 3
Department approved L course 4

Total .. 7

Natural Sciences/Basic Sciences

CHM 114 General Chemistry for Engineers SQ 4
or CHM 116 General Chemistry SQ (4)

PHY 121 University Physics I: Mechanics SQ1,2 3
PHY 122 University Physics Laboratory I SQ2 1
PHY 131 University Physics II: Electricity and Magnetism SQ1,3 ... 3
PHY 132 University Physics Laboratory II SQ1,3 1
PHY 241 University Physics III 1 3

Total .. 15

Mathematical Studies

EEE 100 Introduction to Engineering Design CS 4
MAT 270 Calculus with Analytic Geometry I MA 1 4
MAT 271 Calculus with Analytic Geometry II MA 1 4
MAT 272 Calculus with Analytic Geometry III MA 1 4
MAT 274 Elementary Differential Equations MA 1 3
MAT 342 Linear Algebra 1 ... 4
MAT 362 Advanced Mathematics for Engineers and Scientists 1 ... 3

Total .. 25

Engineering Core

ECE 201 Electrical Networks I 4
ECE 314 Engineering Mechanics 4
ECE 334 Electronic Devices and Instrumentation 4
ECE 352 Properties of Electronic Materials 4
EEE 225 Assembly Language Programming and Microprocessors (Motorola) 4
or EEE 226 Assembly Language Programming and Microprocessors (Intel) (4)

Total .. 20

1 A minimum grade of “C” is required.
2 Both PHY 121 and 122 must be taken to secure SQ credit.
3 Both PHY 131 and 132 must be taken to secure SQ credit.

Electrical Engineering Major

The following courses are required to fulfill the Electrical Engineering major:

CSE 100 Principles of Programming with C++ CS 3
EEE 120 Digital Design Fundamentals 3
EEE 302 Electrical Networks II 3
EEE 303 Signals and Systems 3
EEE 340 Electromagnetic Engineering I 4
EEE 350 Random Signal Analysis 3
EEE 360 Energy Conversion and Transport 4

Total .. 23

The program in Electrical Engineering requires a total of 17 semester hours of technical electives. With department approval, a maximum of two technical electives may be taken outside electrical engineering. Qualified students may choose from approved courses in business, engineering, mathematics, and the sciences at or above the 300-level, including graduate courses. Students must have a GPA of not less than 3.00 and approval of the dean to enroll in EEE graduate-level courses. To ensure breadth of knowledge, students must select courses from at least three of the following six areas. In addition, to ensure depth, two courses must be taken in one area.

Communications and Signal Processing

EEE 407 Digital Signal Processing 4
EEE 455 Communication Systems 4
EEE 459 Communication Networks 3

Controls

EEE 480 Feedback Systems 4
EEE 482 Introduction to State Space Methods 3

Electromagnetics

EEE 440 Electromagnetic Engineering II 4
EEE 443 Antennas for Wireless Communications 4
EEE 445 Microwaves .. 4
EEE 448 Fiber Optics .. 4
Electronic Circuits
- EEE 405 Filter Design ... 3
- EEE 425 Digital Systems and Circuits ... 4
- EEE 433 Analog Integrated Circuits .. 3

Power Systems
- EEE 460 Nuclear Concepts for the 21st Century 3
- EEE 463 Electrical Power Plant .. 3
- EEE 470 Electric Power Devices .. 3
- EEE 471 Power System Analysis .. 3
- EEE 473 Electrical Machinery .. 3

Solid-State Electronics
- EEE 434 Quantum Mechanics for Engineers 3
- EEE 435 Microelectronics .. 3
- EEE 436 Fundamentals of Solid-State Devices 3
- EEE 437 Optoelectronics .. 3
- EEE 439 Semiconductor Facilities and Cleanroom Practices 3

With Department of Electrical Engineering approval, Computer Science and Engineering courses at or above the 300 level may be substituted for one of the above areas.

Electrical Engineering Program of Study

Typical Four-Year Sequence

First Year
- **First Semester**
 - CHM 114 General Chemistry for Engineers SQ 4
 - or CHM 116 General Chemistry SQ (4)
 - ECE 100 Introduction to Engineering Design CS 4
 - or ECE 120 Digital Design Fundamentals (3)
 - ENG 101 First-Year Composition .. 3
 - MAT 270 Calculus with Analytic Geometry I MA 4
- **Total** .. 14 or 15

- **Second Semester**
 - EEE 120 Digital Design Fundamentals 3
 - or ECE 100 Introduction to Engineering Design CS (4)
 - ENG 102 First-Year Composition .. 3
 - MAT 271 Calculus with Analytic Geometry II MA 4
 - PHY 121 University Physics I: Mechanics SQ2 3
 - PHY 122 University Physics Laboratory I SQ2 1
- **Total** .. 15 or 14

Second Year
- **First Semester**
 - CSE 100 Principles of Programming with C++ CS 3
 - ECN 111 Macroeconomic Principles SB 3
 - or ECN 112 Microeconomic Principles SB (3)
 - MAT 272 Calculus with Analytic Geometry III MA 4
 - MAT 274 Elementary Differential Equations MA 3
 - PHY 131 University Physics II: Electricity and Magnetism SQ3 3
 - PHY 132 University Physics Laboratory II SQ3 1
- **Total** .. 17

- **Second Semester**
 - ECE 201 Electrical Networks I ... 4
 - EEE 225 Assembly Language Programming and Microprocessors (Motorola) .. 4
 - or EEE 226 Assembly Language Programming and Microprocessors (Intel) (4)
 - MAT 362 Advanced Mathematics for Engineers and Scientists I .. 3

Third Year
- **First Semester**
 - ECE 334 Electronic Devices and Instrumentation 4
 - EEE 302 Electrical Networks II ... 3
 - EEE 340 Electromagnetic Engineering I 4
 - MAT 342 Linear Algebra ... 3
 - HU/SB and awareness area course .. 3
- **Total** .. 17

- **Second Semester**
 - ECE 300 Intermediate Engineering Design L 3
 - ECE 352 Properties of Electronic Materials 4
 - EEE 303 Signals and Systems .. 3
 - EEE 360 Energy Conversion and Transport 4
 - HU/SB and awareness area course .. 3
- **Total** .. 17

Fourth Year
- **First Semester**
 - ECE 314 Engineering Mechanics ... 4
 - EEE 350 Random Signal Analysis ... 3
 - EEE 488 Senior Design Laboratory I ... 2
 - Technical electives ... 7
- **Total** .. 16

- **Second Semester**
 - EEE 489 Senior Design Laboratory II 2
 - HU/SB and awareness area course .. 3
 - Technical electives ... 10
- **Total** .. 15

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
EEE 436 Fundamentals of Solid-State Devices. (3)
fall and spring
Basic operating principles of various types of optoelectronic devices which play important roles in commercial and communication electronics; light-emitting diodes, injection lasers, and photodetectors. Prerequisite: EEE 437.

EEE 439 Semiconductor Facilities and Cleanroom Practices. (3)
fall
Microcontamination, controlled environments, cleanroom layout and systems, modeling, codes and legislation, ultrapure water, production materials, personnel and operations, hazard management, advanced concepts. Prerequisite: EEE 435 or instructor approval.

EEE 443 Antennas for Wireless Communications. (3)
spring
Fundamental parameters; radiation integrals; wireless systems; wire, loop, and microstrip antennas; antenna arrays; smart antennas; ground effects; multipath. Prerequisite: EEE 445 (or its equivalent).

EEE 445 Microwaves. (4)
fall
Waveguides; circuit theory for waveguiding systems; microwave devices, systems, and energy sources; striplines and microstrips; impedance matching transformers; measurements. Lecture, lab. Prerequisite: EEE 440 (or its equivalent).

EEE 448 Fiber Optics. (4)
fall
Principles of fiber-optic communications. Lecture, lab. Prerequisites: EEE 303, 340.

EEE 455 Communication Systems. (4)
fall and spring
Signal analysis techniques applied to the operation of electrical communication systems. Introduction to and overview of modern digital and analog communications. Lecture, lab. Prerequisite: EEE 350.

EEE 459 Communication Networks. (3)
spring

EEE 460 Nuclear Concepts for the 21st Century. (3)
not regularly offered
Radiation interactions, damage, dose, and instrumentation. Cosmic rays, satellite effects; soft errors; transmutation doping. Fission reactors, nuclear power, TMI, Chernobyl. Radioactive waste. Prerequisite: PHY 241 or 361.

EEE 463 Electrical Power Plant. (3)
fall
Nuclear, fossil, and solar energy sources. Analysis and design of steam supply systems, electrical generating systems, and auxiliary systems. Power plant efficiency and operation. Prerequisite: ECE 301, 340 (or PHY 241).

EEE 470 Electric Power Devices. (3)
fall
Analysis of devices used for short circuit protection, including circuit breakers, relays, and current and voltage transducers. Protection against switching and lightning over voltages. Insulation coordination. Prerequisite: EEE 360.

EEE 471 Power System Analysis. (3)
spring
Review of transmission line parameter calculation. Zero sequence impedance, symmetrical components for fault analysis, short circuit calculation, review of power flow analysis, power system stability, and power system control concepts. Prerequisite: EEE 360.

EEE 473 Electrical Machinery. (3)
fall
Operating principles, constructional details, and design aspects of conventional DC and AC machines, transformers and machines used in computer disc drives, printers, wrist watches, and automobiles. Prerequisite: EEE 360.
EEE 480 Feedback Systems. (4)
fall and spring
Analysis and design of linear feedback systems. Frequency response and root locus techniques, series compensation, and state variable feedback. Lecture, lab. Prerequisite: EEE 303.

EEE 482 Introduction to State Space Methods. (3)
fall
Discrete and continuous systems in state space form controllability, stability, and pole placement. Observability and observers. Pre- or corequisite: EEE 480.

EEE 488 Senior Design Laboratory I. (2)
fall and spring
Capstone senior project. Design process: research, concept, feasibility, simulation, specifications, benchmarking, and proposal generation. Technical communications and team skills enrichment. Lecture, lab. Prerequisites: ECE 300, 334; EEE 303, 340; senior status. Pre- or corequisite: ECE 352; EEE 360.

EEE 489 Senior Design Laboratory II. (2)
fall and spring
Capstone senior project. Implement, evaluate, and document EEE 488 design. Social, economic, and safety considerations. Technical communications and team skills enrichment. Lecture, lab. Prerequisite: EEE 488 in the immediately preceding semester.

EEE 490 Senior Design Laboratory. (3)
fall and spring
Project-oriented laboratory. Each student must complete one or more design projects during the semester. Lecture, lab. Prerequisites: ECE 300, 334; EEE 303; senior status.

EEE 506 Digital Spectral Analysis. (3)
spring
Principles and applications of digital spectral analysis, least squares, random sequences, parametric, and nonparametric methods for spectral estimation. Prerequisites: EEE 407, 554.

EEE 507 Multidimensional Signal Processing. (3)
fall
Processing and representation of multidimensional signals. Design of systems for processing multidimensional data. Introduction to image and array processing issues. Prerequisite: EEE 407 or instructor approval.

EEE 508 Digital Image Processing and Compression. (3)
spring
Fundamentals of digital image perception, representation, processing, and compression. Emphasis on image coding techniques. Signals include still pictures and motion video. Prerequisites: EEE 350 and 407 (or their equivalents).

EEE 511 Artificial Neural Computation Systems. (3)
fall
Networks for computation, learning function representations from data, learning algorithms and analysis, function approximation and information representation by networks, applications in control systems and signal analysis. Prerequisite: instructor approval.

EEE 523 Advanced Analog Integrated Circuits. (3)
fall
Analysis and design of analog integrated circuits: analog circuit blocks, reference circuits, operational-amplifier circuits, feedback, and nonlinear circuits. Prerequisite: EEE 433 (or its equivalent).

EEE 525 VLSI Design. (3)
fall and spring
Analysis and design of Very Large Scale Integrated (VLSI) circuits. Physics of small devices, fabrication, regular structures, and system timing. Open only to graduate students.

EEE 526 VLSI Architectures. (3)
fall
Special-purpose architectures for signal processing. Design of array processor systems at the system level and processor level. High-level synthesis. Prerequisite: CSE 390 or EEE 407 or instructor approval.

EEE 527 Analog to Digital Converters. (3)
fall
Detailed introduction to the design of Nyquist rate, CMOS analog to digital converters. Prerequisite: EEE 523.

EEE 530 Advanced Silicon Processing. (3)
spring
Thin films, CVD, oxidation, diffusion, ion-implantation for VLSI, metallization, silicides, advanced lithography, dry etching, rapid thermal processing. Pre- or corequisite: EEE 435.

EEE 531 Semiconductor Device Theory I. (3)
fall
Transport and recombination theory, pn and Schottky barrier diodes, bipolar and junction field-effect transistors, and MOS capacitors and transistors. Prerequisite: EEE 436 (or its equivalent).

EEE 532 Semiconductor Device Theory II. (3)
спring
Advanced MOSFETs, charge-coupled devices, solar cells, photodetectors, light-emitting diodes, microwave devices, and modulation-doped structures. Prerequisite: EEE 531.

EEE 533 Semiconductor Process/Device Simulation. (3)
fall
Process simulation concepts, oxidation, ion implantation, diffusion, device simulation concepts, pn junctions, MOS devices, bipolar transistors. Prerequisite: EEE 436 (or its equivalent).

EEE 534 Semiconductor Transport. (3)
spring
Carrier transport in semiconductors. Hall effect, high electric field, Boltzmann equation, correlation functions, and carrier-carrier interactions. Prerequisites: EEE 434, 436 (or 531).

EEE 536 Semiconductor Characterization. (3)
spring
Measurement techniques for semiconductor materials and devices. Electrical, optical, physical, and chemical characterization methods. Prerequisite: EEE 436 (or its equivalent).

EEE 537 Semiconductor Optoelectronics I. (3)
fall
Electronic states in semiconductors, quantum theory of radiation, absorption processes, radiative processes, nonradiative processes, photoluminescence, and photonic devices. Prerequisites: EEE 434, 436 (or 531).

EEE 538 Semiconductor Optoelectronics II. (3)
spring
Material and device physics of semiconductor lasers, light-emitting diodes, and photodetectors. Emerging material and device technology in III-V semiconductors. Prerequisite: EEE 537.

EEE 539 Introduction to Solid-State Electronics. (3)
fall
Crystal lattices, reciprocal lattices, quantum statistics, lattice dynamics, equilibrium, and nonequilibrium processes in semiconductors. Prerequisite: EEE 434.

EEE 541 Electromagnetic Fields and Guided Waves. (3)
not regularly offered
Polarization and magnetization; dielectric, conducting, anisotropic, and semiconducting media; duality, uniqueness, and image theory; plane wave functions, waveguides, resonators, and surface guided waves. Prerequisite: EEE 440 (or its equivalent).

EEE 543 Antenna Analysis and Design. (3)
fall
Impedances, broadband antennas, frequency independent antennas, miniaturization, aperture antennas, horns, reflectors, lens antennas, and continuous sources design techniques. Prerequisite: EEE 443 (or its equivalent).

EEE 544 High-Resolution Radar. (3)
not regularly offered
Fundamentals; wideband coherent design, waveforms, and processing; stepped frequency; synthetic aperture radar (SAR); inverse synthetic aperture radar (ISAR); imaging. Prerequisites: EEE 303 and 340 (or their equivalents).

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
EEE 545 Microwave Circuit Design. (3) spring
Analysis and design of microwave attenuators, in-phase and quadrature-phase power dividers, magic tee's, directional couplers, phase shifters, DC blocks, and equalizers. Prerequisite: EEE 445 or instructor approval.

EEE 546 Advanced Fiber Optics. (3) not regularly offered
Theory of propagation in fibers, couplers and connectors, distribution networks, modulation, noise and detection, system design, and fiber sensors. Prerequisite: EEE 448 or instructor approval.

EEE 547 Microwave Solid-State Circuit Design I. (3) spring
Application of semiconductor characteristics to practical design of microwave mixers, detectors, limiters, switches, attenuators, multipliers, phase shifters, and amplifiers. Prerequisite: EEE 545 or instructor approval.

EEE 548 Coherent Optics. (3) not regularly offered
Diffraction, lenses, optical processing, holography, electro-optics, and lasers. Prerequisite: EEE 440 (or its equivalent).

EEE 549 Lasers. (3) not regularly offered
Theory and design of gas, solid, and semiconductor lasers. Prerequisite: EEE 448 or instructor approval.

EEE 550 Transform Theory and Applications. (3) not regularly offered
Introduction to abstract integration, function spaces, and complex analysis in the context of integral transform theory. Applications to signal analysis, communication theory, and system theory. Prerequisite: EEE 303.

EEE 551 Information Theory. (3) not regularly offered
Entropy and mutual information, source and channel coding theorems, applications for communication and signal processing. Prerequisite: EEE 554.

EEE 552 Digital Communications. (3) spring
Complex signal theory, digital modulation, optimal coherent and incoherent receivers, channel codes, coded modulation, Viterbi algorithm. Prerequisite: EEE 554.

EEE 553 Coding and Cryptography. (3) spring
Introduction to algebra, block and convolutional codes, decoding algorithms, turbo codes, coded modulation, private and public key cryptography. Prerequisite: EEE 554.

EEE 554 Random Signal Theory. (3) fall
Application of statistical techniques to the representation and analysis of electrical signals and to communications systems analysis. Prerequisite: EEE 350 or instructor approval.

EEE 555 Modeling and Performance Analysis. (3) not regularly offered
Modeling and performance analysis of stochastic systems and processes such as network traffic queueing systems and communication channels. Prerequisite: EEE 554.

EEE 556 Detection and Estimation Theory. (3) spring
Combination of the classical techniques of statistical inference and the random process characterization of communication, radar, and other modern data processing systems. Prerequisites: EEE 455, 554.

EEE 558 Wireless Communications. (3) fall
Cellular systems, path loss, multipath fading channels, modulation and signaling for wireless, diversity, equalization coding, spread spectrum, TDMA/FDMA/CDMA. Prerequisite: EEE 552.

EEE 571 Power System Transients. (3) not regularly offered

EEE 572 Advanced Power Electronics. (3) not regularly offered
Analysis of device operation, including thyristors, gate-turn-off thyristors, and transistors. Design of rectifier and inverter circuits. Applications such as variable speed drives, HVDC, motor control, and uninterruptable power supplies. Prerequisite: EEE 470.

EEE 573 Electric Power Quality. (3) spring
Sinusoidal wave shapes; maintenance; study of momentary events, power system harmonics, instrumentation, filters, power conditioners, and other power quality enhancement methods. Prerequisite: EEE 360 (or its equivalent).

EEE 574 Computer Solution of Power Systems. (3) not regularly offered
Algorithms for digital computation for power flow, fault, and stability analysis. Sparse matrix and vector programming methods, numerical integration techniques, stochastic methods, solution of the least squares problem. Prerequisite: EEE 471.

EEE 575 Power Engineering Operations and Planning. (3) fall
Economic dispatch, unit commitment, dynamic programming, power system planning and operation, control, generation modeling, AGC, and power production. Prerequisite: EEE 471 or graduate standing.

EEE 576 Power Transmission and Distribution. (3) spring
High-voltage transmission line electric design; conductors, corona, RI and TV noise, insulators, clearances. DC characteristic, feeders voltage drop, and capacitors. Prerequisite: EEE 470.

EEE 577 Filtering of Stochastic Processes. (3) not regularly offered
Modeling, estimation, and filtering of stochastic processes, with emphasis on the Kalman filter and its applications in signal processing and control. Prerequisites: EEE 482, 550, 554.

EEE 578 Linear System Theory. (3) spring
Controllability, observability, and realization theory for multivariable continuous time systems. Stabilization and asymptotic state estimation. Disturbance decoupling, noninteracting control. Prerequisite: EEE 482.

EEE 579 Internship. (3) fall, spring, summer
Work performed in an industrial setting that provides practical experience and adds value to the classroom and research learning processes.

EEE 580 Digital Control Systems. (3) fall
Analysis and design of digital and sampled data control systems, including sampling theory, z-transforms, the state transition method, stability, design, and synthesis. Prerequisites: EEE 482, 550.

EEE 581 Nonlinear Control Systems. (3) not regularly offered
Stability theory, including phase-plane, describing function, Lyapunov's method, and frequency domain criteria for continuous and discrete, nonlinear, and time-varying systems. Prerequisite: EEE 482.

EEE 582 Optimal Control. (3) fall
Optimal control of systems. Calculus of variations, dynamic programming, linear quadratic regulator, numerical methods, and Pontryagin's principle. Cross-listed as MAE 507. Credit is allowed for only EEE 587 or MAE 507. Prerequisite: EEE 482 or MAE 506.
EEE 588 Design of Multivariable Control Systems. (3)

Practical tools for designing robust MIMO controllers. State feedback and estimation, model-based compensators, MIMO design methodologies, CAD, real-world applications. Prerequisite: EEE 480 (or its equivalent).

EEE 606 Adaptive Signal Processing. (3)

Principles/applications of adaptive signal processing, adaptive linear combiner, Wiener least-squares solution, gradient search, performance surfaces, LMS/RLS algorithms, block time/frequency domain LMS. Prerequisites: EEE 506, 554.

EEE 607 Speech Coding for Multimedia Communications. (3)

Spring

Speech and audio coding algorithms for applications in wireless communications and multimedia computing. Prerequisite: EEE 407. Prerequisite: EEE 407. Corequisite: EEE 506.

EEE 631 Heterojunctions and Superlattices. (3)

Fall

Principles of heterojunctions and quantum well structures, band line-ups, optical, and electrical properties. Introduction to heterojunction devices. Prerequisites: EEE 436, 531.

EEE 632 Heterojunction Devices. (3)

Not regularly offered

Applications of heterostructures, quantum wells, and superlattice to modulation-doped FETs, heterostructure bipolar transistors, lasers, detectors, and modulators. Prerequisites: EEE 434, 631 (or 537).

EEE 641 Advanced Electromagnetic Field Theory. (3)

Not regularly offered

Cylindrical wave functions, waveguides, and resonators; spherical wave functions and resonators; scattering from planar, cylindrical, and spherical surfaces; Green's functions. Prerequisite: EEE 541 (or its equivalent).

EEE 643 Advanced Topics in Electromagnetic Radiation. (3)

Spring

High-frequency asymptotic techniques, geometrical and physical theories of diffraction (GTD and PTD), moment method (MM), radar cross section (RCS) prediction, Fourier transforms in radiation, and synthesis methods. Prerequisite: EEE 543.

EEE 647 Microwave Solid-State Circuit Design II. (3)

Fall

Practical design of microwave free-running and voltage-controlled oscillators using Gunn and Impatt diodes and transistors; analysis of noise characteristics of the oscillator. Prerequisites: EEE 545, 547.

EEE 684 Internship. (1–2)

Fall, Spring, Summer

Work performed in an industrial setting that provides practical experience and adds value to the classroom and research learning processes.

EEE 686 Adaptive Control. (3)

Not regularly offered

Main topics covered: adaptive identification, convergence, parametric models, performance and robustness properties of adaptive controllers, persistence of excitation, and stability. Prerequisites: both EEE 582 and 586 or instructor recommendation.

EEE 731 Advanced MOS Devices. (3)

Spring

Threshold voltage, subthreshold current, scaling, small geometry effects, hot electrons, and alternative structures. Prerequisite: EEE 531.

EEE 770 Advanced Topics in Power Systems. (3)

Not regularly offered

Power system problems of current interest, approached at an advanced technical level, for mature students. Prerequisites: EEE 577 and 579 (or their equivalents); instructor approval.

EEE 784 Internship. (3)

Fall, Spring, Summer

Work performed in an industrial setting that provides practical experience and adds value to the classroom and research learning processes.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
government, transportation, construction, and social services. Within this wide variety of organizations, IEs get involved in projects such as designing and implementing quality control systems, independent work groups, the work flow in a medical laboratory, real-time production control systems, computer-based management information systems, and manufacturing operating systems, to name a few. A unique feature of most industrial engineering assignments is that they involve interdisciplinary teams. For example, the IE might be the leader of a team consisting of electrical and mechanical engineers, accountants, computer scientists, and planners. This IE program gives the student the skills necessary to direct these teams. These skills include team building, brainstorming, group dynamics, and interpersonal relationships.

IEs have a sound background in technology integration, management theory and application, engineering economics and cost analysis. IEs are well equipped to deal with problems never seen before, making them prime candidates for promotion through the management career path, especially in high-tech organizations. In fact, more than half of all practicing IEs are in management positions. This area of expertise has placed the IE in the leadership role in the establishment of a new field of activity called “management of technology.”

Industrial engineers are well trained in the development and use of analytical tools, and their most distinctive skill is in the area of model building. IEs must quickly learn and understand the problems of their clients. In this context, good people skills and good analytic skills are essential. This industrial engineering program offers both.

INDUSTRIAL ENGINEERING—B.S.E.

The curriculum in Industrial Engineering builds upon mathematics, computer programming, and the engineering core. Beyond this foundation, the curriculum includes a number of required IE core courses, IE electives, and study area electives, enabling students to focus on a specific career objective.

By successfully completing this curriculum, the student is prepared to embark on a career in industrial engineering or to pursue advanced education in graduate school.

The career-focused study-areas are as follows:

1. Industrial and Management Systems. For a broad traditional IE career in the design and analysis of manufacturing and service systems.
2. Information and Telecommunication Systems. For a career in the application of integrated computer and telecommunication systems to manufacturing and service systems analysis and design.
4. High-Tech Manufacturing. For a career in the design and analysis of integrated manufacturing systems.
5. Preprofessional and Service Systems. For a career in law, medicine or public service or careers in the design and analysis of health care, agribusiness, banking/financial, and government/public-administration systems.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Industrial Engineering. A minimum of 50 upper-division hours is required. Students must attain a GPA of at least 2.00 for the courses in the major field.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74. For information concerning admission, degree, course, and graduation requirements for the School of Engineering, see pages 211–214 of this catalog.

COURSE REQUIREMENTS

Students take 60 semester hours of university English proficiency and general studies course work, 20 hours of engineering core, 30 hours of industrial engineering courses, six hours of industrial engineering electives, and 12 hours of career-focused study area electives. Each study area has an associated list of recommended General Studies, IE electives, and study area courses. The course work for the undergraduate degree can be classified into the following categories:

First-Year Composition
Choose among the course combinations below .. 6
ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)
——or——
ENG 105 Advanced First-Year Composition (3)
Elective chosen with an advisor (3)
——or——
ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)
Total ... 6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
ECN 112 Microeconomic Principles SB .. 3
HU courses .. 6–9
SB course(s) .. 3–6
Minimum total .. 15

Literacy and Critical Inquiry
ECE 300 Intermediate Engineering Design L 3
Approved IE L course .. 3
Total ... 6

Natural Sciences/Basic Sciences
CHM 114 General Chemistry for Engineers SQ 4
or CHM 116 General Chemistry SQ (4)
PHY 121 University Physics I: Mechanics SQ1 3
PHY 122 University Physics Laboratory I SQ1 1
PHY 131 University Physics II: Electricity and Magnetism SQ2 3
PHY 132 University Physics Laboratory II SQ2 1
Basic science elective .. 3
Total ... 15

Mathematical Studies
MAT 242 Elementary Linear Algebra .. 2
MAT 270 Calculus with Analytic Geometry I MA 4
MAT 271 Calculus with Analytic Geometry II MA 4
MAT 272 Calculus with Analytic Geometry III MA 4
MAT 274 Elementary Differential Equations MA3
Total ..17
General Studies/school requirements total53

Engineering Core
ECE 100 Introduction to Engineering Design CS4
ECE 201 Electrical Networks I ..4
ECE 210 Engineering Mechanics I: Statics3
ECE 212 Engineering Mechanics II: Dynamics3
ECE 350 Structure and Properties of Materials3
IEE 463 Computer-Aided Manufacturing and Control CS3
Total ..20

Industrial Engineering Major

The following courses are required:

ASE 485 Engineering Statistics CS3
CSE 100 Principles of Programming with C++ CS3
ECE 380 Probability and Statistics for Engineering Problem Solving CS3
IEE 294 ST: Industrial Engineering Applications Seminar2
IEE 300 Economic Analysis for Engineers3
IEE 360 Manufacturing Processes ..3
IEE 368 Facilities Analysis and Design3
IEE 374 Quality Control CS ..3
IEE 461 Production Control ..3
IEE 475 Simulating Stochastic Systems CS3
IEE 476 Operations Research Techniques/Applications CS4
Total ..33

Industrial Engineering Electives Area

Students select four semester hours of industrial engineering electives. IEE 361 Manufacturing Processes Lab is highly recommended. For course information, see the list of recommended courses in the department advising office.

Career-Focused Study Area Electives

Students select a minimum of 12 semester hours from the following recommended electives in one of the five career-focused study areas:

Industrial and Management Systems
IEE 305 Information Systems Engineering CS3
IEE 431 Engineering Administration3
Any approved engineering or business electives6

Information and Telecommunication Systems
CSE 200 Concepts of Computer Science CS3
CSE 210 Object-Oriented Design and Data Structure3
CSE 240 Introduction to Programming Languages3
IEE 305 Information Systems Engineering CS3

Global Industrial Engineering Leadership
ECN 306 Survey of International Economics SB, G3
IBS 300 Principles of International Business G3
IBS 400 Cultural Factors in International Business C, G3
Any approved international business electives3

High-Tech Manufacturing
ECE 352 Properties of Electronic Materials4
EEE 435 Microelectronics ..3
EEE 436 Fundamentals of Solid-State Devices3
MSE 335 Introduction to Materials Science and Engineering3

MSE 441 Analysis of Materials Failures3
MSE 470 Polymers and Composites3

Preprofessional and Service Systems

Agribusiness Systems
AGB 340 Food Processing ..3
AGB 341 Food Analysis ...3
AGB 351 Management Science CS3
AGB 364 Agribusiness Technologies I3
AGB 414 Agribusiness Analysis L3
AGB 440 Food Safety ..3
AGB 442 Food and Industrial Microbiology4

Banking and Financial Systems
FIN 300 Fundamentals of Finance3
FIN 331 Financial Markets and Institutions3
FIN 361 Managerial Finance ..3
FIN 431 Management of Financial Institutions3

Government and Public Administration Systems
POS 310 American National Government SB3
POS 316 State and Local Government SB3
POS 320 Public Administration SB3
POS 333 Interest Groups SB ..3

Health Care Systems
HSA 473 Comparative Health Systems3
HSA 498 PS: Health Care Finance3
HSA 498 PS: Health Economics3
HSA 498 PS: Health Service Administration and Policy3
HSA 498 PS: Policy Issues in Health Care3

Prelaw Systems
AGB 456 World Agricultural Resources G3
AJS 360 Substantive Criminal Law (ASU West)3
COM 422 Advanced Argumentation3
GLB 300 Gateway to Global Business (ASU West)3
LES 306 Business Law ..3
POL 470 Law and Political Order (ASU West)3

Premedicine Systems
BIO 181 General Biology SQ ...4
BIO 182 General Biology SG4
BIO 351 Developmental Anatomy3
CHM 331 General Organic Chemistry3
CHM 332 General Organic Chemistry3
CHM 335 General Organic Chemistry Lab1
CHM 336 General Organic Chemistry Lab1

Industrial Engineering Program of Study

Typical Four-Year Sequence

First Year

IEE 114 General Chemistry for Engineers SQ4
or CHM 116 General Chemistry SQ4
ECE 100 Introduction to Engineering Design CS4
or HU/SB elective (3) ...3
ENG 101 First-Year Composition3
MAT 270 Calculus with Analytic Geometry I MA4
Total ..15

Second Semester

ECN 112 Microeconomic Principles SB3
ENG 102 First-Year Composition3
MAT 271 Calculus with Analytic Geometry II MA4
PHY 121 University Physics I: Mechanics SQ4
PHY 122 University Physics Laboratory I SQ1

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>HU/SB elective(^2)</td>
<td>3</td>
</tr>
<tr>
<td>or ECE 100 Introduction to Engineering Design CS (^4)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>CSE 100 Principles of Programming with C++ CS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 300 Economic Analysis for Engineers</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 242 Elementary Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>MAT 272 Calculus with Analytic Geometry III MA</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>PHY 131 University Physics II: Electricity and Magnetism SQ(^4)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>PHY 132 University Physics Laboratory II SQ(^4)</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>ECE 210 Engineering Mechanics I: Statics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 380 Probability and Statistics for Engineering Problem</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 294 ST: Industrial Engineering Applications Seminar</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>IEE 360 Manufacturing Processes</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MAT 274 Elementary Differential Equations MA</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Basic science elective(^5)</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>ASE 485 Engineering Statistics CS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 368 Facilities Analysis and Design</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 374 Quality Control CS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>HU/SB elective(^2)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Industrial Engineering elective</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>ECE 300 Intermediate Engineering Design L</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 212 Engineering Mechanics II: Dynamics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ECE 350 Structure and Properties of Materials</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 463 Computer-Aided Manufacturing and Control CS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 476 Operations Research Techniques/Applications CS</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>ECE 201 Electrical Networks I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>IEE 461 Production Control</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>IEE 475 Simulating Stochastic Systems CS</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Study area elective(^3)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Study area elective</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second</td>
<td>HU/SB elective(^2)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Senior capstone course</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Study area electives</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

1. Students who have taken no high school chemistry should take CHM 113 and 116.
2. Engineering students may not use aerospace studies (AES) or military science (MIS) courses to satisfy HU or SB requirements.
3. Both PHY 121 and 122 must be taken to secure SQ credit.
4. Both PHY 131 and 132 must be taken to secure SQ credit.
5. This elective must be an earth science or life science course; if physics or chemistry, the course must be of a more advanced level than CHM 114 or 116 or PHY 131.

INDUSTRIAL ENGINEERING (IEE)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEE 294 Special Topics. (1–4)</td>
<td></td>
</tr>
<tr>
<td>fall and spring</td>
<td></td>
</tr>
<tr>
<td>Possible topics:</td>
<td></td>
</tr>
<tr>
<td>(a) Industrial Engineering Applications Seminar. (2)</td>
<td></td>
</tr>
<tr>
<td>IEE 300 Economic Analysis for Engineers. (3)</td>
<td></td>
</tr>
<tr>
<td>fall and spring</td>
<td></td>
</tr>
<tr>
<td>Economic evaluation of alternatives for engineering decisions, empha-</td>
<td></td>
</tr>
<tr>
<td>sizing the time value of money. Prerequisites: ECE 100; MAT 270.</td>
<td></td>
</tr>
<tr>
<td>IEE 305 Information Systems Engineering. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Emphasis on systems analysis, design and implementation of informa-</td>
<td></td>
</tr>
<tr>
<td>tion systems using fourth-generation languages and alternative</td>
<td></td>
</tr>
<tr>
<td>database structures. Prerequisite: CSE 100.</td>
<td></td>
</tr>
<tr>
<td>General Studies: CS</td>
<td></td>
</tr>
<tr>
<td>IEE 360 Manufacturing Processes. (3)</td>
<td></td>
</tr>
<tr>
<td>fall and spring</td>
<td></td>
</tr>
<tr>
<td>Production technique and equipment. Casting and molding, forming,</td>
<td></td>
</tr>
<tr>
<td>machining, joining and assembly, computer-integrated manufacturing,</td>
<td></td>
</tr>
<tr>
<td>rapid prototyping, and electronics manufacturing. Cross-listed as MAE</td>
<td></td>
</tr>
<tr>
<td>351. Credit is allowed for only IEE 360 or MAE 351. Prerequisite: ECE</td>
<td></td>
</tr>
<tr>
<td>350.</td>
<td></td>
</tr>
<tr>
<td>IEE 361 Manufacturing Processes Lab. (1)</td>
<td></td>
</tr>
<tr>
<td>fall and spring</td>
<td></td>
</tr>
<tr>
<td>Series of labs designed to illustrate concepts presented in IEE 360</td>
<td></td>
</tr>
<tr>
<td>on production technique and equipment. Corequisite: IEE 360 or MAE 351</td>
<td></td>
</tr>
<tr>
<td>General Studies: CS</td>
<td></td>
</tr>
<tr>
<td>IEE 368 Facilities Analysis and Design. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Planning analysis and design of methods of the tangible physical</td>
<td></td>
</tr>
<tr>
<td>assets of the firm. Emphasis on facilities location, materials handling,</td>
<td></td>
</tr>
<tr>
<td>automation, computer integration, and utilization of financial</td>
<td></td>
</tr>
<tr>
<td>resources. Applications in diverse fields. Lecture, lab. Prerequisite:</td>
<td></td>
</tr>
<tr>
<td>IEE 300.</td>
<td></td>
</tr>
<tr>
<td>IEE 369 Work Analysis and Design. (3)</td>
<td></td>
</tr>
<tr>
<td>spring</td>
<td></td>
</tr>
<tr>
<td>Planning analysis and design of methods of accomplishing work.</td>
<td></td>
</tr>
<tr>
<td>Emphasis on human factors, work planning, methods analysis and design,</td>
<td></td>
</tr>
<tr>
<td>and work measurement. Applications in diverse fields. Lecture, lab.</td>
<td></td>
</tr>
<tr>
<td>IEE 374 Quality Control. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Control charting and other statistical process control techniques.</td>
<td></td>
</tr>
<tr>
<td>Organization and managerial aspects of quality assurance, plus</td>
<td></td>
</tr>
<tr>
<td>acceptance sampling plans. Prerequisite: ECE 380.</td>
<td></td>
</tr>
<tr>
<td>General Studies: CS</td>
<td></td>
</tr>
<tr>
<td>IEE 431 Engineering Administration. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Introduces quantitative and qualitative approaches to management</td>
<td></td>
</tr>
<tr>
<td>functions, engineering administration, organizational analysis, deci-</td>
<td></td>
</tr>
<tr>
<td>sion making, and communication. Credit is allowed for only IEE 431 or</td>
<td></td>
</tr>
<tr>
<td>541. Prerequisite: senior standing.</td>
<td></td>
</tr>
<tr>
<td>IEE 437 Human Factors Engineering. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Study of the human psychological and physiological factors that</td>
<td></td>
</tr>
<tr>
<td>underlie the design of equipment and the interaction between people</td>
<td></td>
</tr>
<tr>
<td>and machines. Credit is allowed for only IEE 437 or 547.</td>
<td></td>
</tr>
<tr>
<td>IEE 461 Production Control. (3)</td>
<td></td>
</tr>
<tr>
<td>fall</td>
<td></td>
</tr>
<tr>
<td>Techniques for the planning, control, and evaluation of production</td>
<td></td>
</tr>
<tr>
<td>systems. Project management, forecasting, inventory control, schedul-</td>
<td></td>
</tr>
<tr>
<td>ing, enterprise requirements planning. Prerequisites: ASE 485; CSE 100;</td>
<td></td>
</tr>
<tr>
<td>IEE 476.</td>
<td></td>
</tr>
<tr>
<td>IEE 463 Computer-Aided Manufacturing and Control. (3)</td>
<td></td>
</tr>
<tr>
<td>spring</td>
<td></td>
</tr>
<tr>
<td>Computer control in manufacturing, CIM, NC, logic controllers, group</td>
<td></td>
</tr>
<tr>
<td>technology, process planning, and robotics. Credit is allowed for only</td>
<td></td>
</tr>
<tr>
<td>IEE 483 or 543. Prerequisite: IEE 360 or MAE 351.</td>
<td></td>
</tr>
<tr>
<td>General Studies: CS</td>
<td></td>
</tr>
<tr>
<td>IEE 475 Simulating Stochastic Systems. (3)</td>
<td></td>
</tr>
<tr>
<td>fall and spring</td>
<td></td>
</tr>
<tr>
<td>Analysis of stochastic systems using basic queuing networks and dis-</td>
<td></td>
</tr>
<tr>
<td>crete event simulation. Basic network modeling, shared resources,</td>
<td></td>
</tr>
<tr>
<td>routing, assembly logic. Credit is allowed for only IEE 475 or 545.</td>
<td></td>
</tr>
<tr>
<td>Prerequisites: ASE 485; CSE 100; IEE 476.</td>
<td></td>
</tr>
<tr>
<td>General Studies: CS</td>
<td></td>
</tr>
</tbody>
</table>
IEE 476 Operations Research Techniques/Applications. (4)
fall and spring
Industrial systems applications with operations research techniques.
Resource allocation, product mix, production, shipping, task assignment,
market share, machine repair, and customer service. Credit is allowed for
only IEE 476 or 464. Prerequisites: ASE 485; CSE 100.

General Studies: CS

IEE 490 Project in Design and Development. (3)
fall and spring
Individual or team capstone project in creative design and synthesis.
Prerequisite: senior standing.

IEE 494 Special Topics. (1–4)
not regularly offered

IEE 505 Applications Engineering. (3)
fall and spring
Develops working knowledge of application systems development
tools needed for computer-integrated enterprise. Includes techniques for
application generation in forth- and fifth-generation software envi-
ronments. Topics include client server network systems, decision sup-
sport systems, and transaction systems in distributed environment.
Prerequisite: graduate standing.

IEE 511 Analysis of Decision Processes. (3)
spring
Methods of making decisions in complex environments and statistical
decision theory; effects of risk, uncertainty, and strategy on engineer-
 ing and managerial decisions. Prerequisite: IEE 437.

IEE 520 Ergonomics Design. (3)
spring
Human physiological and psychological factors in the design of work
environments and in the employment of people in man-machine sys-
tems. Open-shop lab assignments in addition to class work. Prereq-
site: IEE 437.

IEE 530 Enterprise Modeling. (3)
spring
Focuses on social, economic, and technical models of the enterprise
with emphasis on the management of technological resources.
Includes organization, econometric, financial, and large-scale mathe-
atical models. Prerequisite: graduate standing.

IEE 531 Topics in Engineering Administration. (3)
spring in even years
Consideration given to philosophical, psychological, political, and
social implications of administrative decisions. Prerequisite: IEE 532
or instructor approval. Prerequisite: graduate standing.

IEE 532 Management of Technology. (3)
spring
Topics include designing a technical strategy; technological forecast-
ing; interfacing marketing engineering and manufacturing; designing
and managing innovation systems; creativity; application of basic
management principles to technology management. Prerequisite: IEE
431.

IEE 533 Scheduling and Network Analysis Models. (3)
spring
Application of scheduling and sequencing algorithms, deterministic
and stochastic network analysis, and flow algorithms. Prerequisites:
ECE 380; IEE 476.

IEE 541 Engineering Administration. (3)
fall
Introduces quantitative and qualitative approaches to management
functions, engineering administration, organizational analysis, deci-
sion making, and communication. Credit is allowed for only IEE 541 or
431. Prerequisite: graduate standing.

IEE 543 Computer-Aided Manufacturing and Control. (3)
spring
Computer control in manufacturing, CIM, NC, logic controllers, group
technology, process planning and robotics. Credit is allowed for only
IEE 543 or 463. Prerequisite: C programming capability.

IEE 545 Simulating Stochastic Systems. (3)
fall and spring
Analysis of stochastic systems using basic queuing networks and dis-
crete event simulation. Basic network modeling, shared resources,
routing, assembly logic. Credit is allowed for only IEE 545 or 475. Pre-
requisites: ASE 485; IEE 476.

IEE 546 Operations Research Techniques/Applications. (4)
fall and spring
Students model and analyze industrial systems applications with oper-
ations research techniques. Resource allocation, product mix, produc-
tion, shipping, task assignment, market share, machine repair,
customer service. Credit is allowed for only IEE 546 or 476. Prequer-
site: ASE 485.

IEE 547 Human Factors Engineering. (3)
fall and spring
Study of people at work; designing for human performance effective-
ness and productivity. Considerations of human physiological and psy-
chological factors. Credit is allowed for only IEE 547 or 437.

IEE 552 Strategic Technological Planning. (3)
spring
Study of concept of strategy, strategy formulation process, and strate-
gical planning methodologies with emphasis on engineering design and
manufacturing strategy, complemented with case studies. An analyti-
cal executive planning decision support system is presented and used
throughout course. Pre- or corequisites: IEE 545, 561, 572, 574.

IEE 560 Object-Oriented Information Systems. (3)
spring
Application of object-oriented technology concepts to manufacturing
and enterprise systems. Topics include Java, object management sys-
tems, and application design. Prerequisite: IEE 505.

IEE 561 Production Systems. (3)
spring
Understanding how factories operate, how performance is measured,
and how operational changes impact performance metrics. Opera-
tional philosophies, increasing production efficiency through quantita-
tive methods. Prerequisites: ASE 485; IEE 476.

IEE 562 Computer-Aided Manufacturing (CAM) Tools. (3)
spring
Current topics in automation, distributed control, control code genera-
tion, control logic validation, CAM integration, CAD/CAM data struc-
tures, planning for control systems. Topics vary by semester.
Prerequisite: IEE 463 or 543.

IEE 563 Systems Analysis for Distributed Systems. (3)
spring
Analysis and design of distributed groupware applications for manufac-
turing and enterprise systems. Prerequisite: graduate standing.

IEE 564 Planning for Computer-Integrated Manufacturing. (3)
fall
Theory and use of IDEF methodology in planning for flexible manufac-
turing, robotics, and real-time control. Simulation concepts applied to
computer-integrated manufacturing planning. Prerequisite: graduate
standing.

IEE 565 Computer-Integrated Manufacturing Research. (3)
spring
Integration and use of research areas in computer-inte-
grated manufacturing, including real-time software, manufacturing
information systems, flexible and integrated manufacturing systems,
robotics, and computer graphics. Prerequisite: IEE 564.

IEE 566 Simulation in Manufacturing. (3)
spring in even years
Use of simulation in computer-integrated manufacturing with an
emphasis on modeling material handling systems. Programming,
declarative, and intelligence-based simulation environments. Prereq-
site: IEE 545.

IEE 567 Simulation System Analysis. (3)
fall
Simulation modeling of processes involving discrete and continuous
system components. Topics include random number generators, output
analysis, variance reduction, and statistical issues related to simu-
lation. Prerequisite: IEE 545.

IEE 569 Advanced Statistical Methods. (3)
fall in even years
Application of statistical inference procedures, based on ranks, to
engineering problems. Efficient alternatives to classical statistical
inference constrained by normality assumptions. Prerequisite: ASE
485.

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation
requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed
in this catalog, see “Classification of Courses,” page 51.
IEE 570 Advanced Quality Control. (3)
spring
Economic-based acceptance sampling, multivariate acceptance sampling, narrow limit gauging in inspector error and attributes acceptance sampling, principles of quality management, and selected topics from current literature. Prerequisite: IEE 485.

IEE 571 Quality Management. (3)
fall
Total quality concepts, quality strategies, quality and competitive position, quality costs, vendor relations, the quality manual, and quality in the services. Prerequisite: graduate standing.

IEE 572 Design of Engineering Experiments. (3)
fall and spring
Analysis of variance and experimental design. Topics include general design methodology, incomplete blocks, confounding, fractional replication, and response surface methodology. Prerequisite: ASE 485.

IEE 573 Reliability Engineering. (3)
spring
Nature of reliability, time to failure densities, series/parallel/standby systems, complex system reliability, Bayesian reliability, and sequential reliability tests. Prerequisite: ECE 380.

IEE 574 Applied Deterministic Operations Research Models. (3)
fall and spring
Develops advanced techniques in operations research for the solution of complex industrial systems problems. Goal programming, integer programming, heuristic methods, dynamic and nonlinear programming. Prerequisite: IEE 476.

IEE 575 Applied Stochastic Operations Research Models. (3)
spring
Students formulate and solve industrial systems problems with stochastic components using analytical techniques. Convolution, continuous-time Markov chains, queues with batching, priorities, balking, open/closed queuing networks. Prerequisites: ASE 485; IEE 476.

IEE 577 Decision and Expert Systems Methodologies. (3)
fall
Application of artificial intelligence methodologies in decision support systems. Topics include neural networks, fuzzy logic systems, and expert systems. Prerequisite: graduate standing.

IEE 578 Regression Analysis. (3)
fall
Regression model building oriented toward engineers/physical scientists. Topics include linear regression, diagnostics, biased and robust fitting, nonlinear regression. Prerequisite: ASE 485.

IEE 579 Time Series Analysis and Forecasting. (3)
fall in even years
Forecasting time series by the Box-Jenkins and exponential smoothing techniques; utilizes existing digital computer programs to augment the theory. Prerequisite: ASE 485.

IEE 582 Response Surfaces and Process Optimization. (3)
spring
Introduction to response surface method and its applications. Topics include steepest ascent, canonical analysis, designs, and optimality criteria. Prerequisite: IEE 572.

IEE 594 Conference and Workshop. (1)
fall and spring
Orientation to the developing work in the field with an emphasis on what the IE faculty are doing.

IEE 598 Special Topics. (1–4)
not regularly offered
Possible topics:
(a) Advanced Topics in Deterministic Operations Research. (3)
(b) Advanced Topics in Scheduling. (3)
(c) Analysis of Massive Data Sets. (3)
(d) Computer and Human Vision. (3)
(e) DOE/SPC for Semiconductor Processes. (3)
(f) Enterprise Internet/Intranet. (3)
(g) Introduction to Rapid Prototyping. (3)
(h) Mechatronics. (3)
(i) Modeling and Analysis of Semiconductor Manufacturing. (3)
(j) Product Modeling. (3)
(k) Strategic Design of Manufacturing Systems. (3)
(l) Strategic Issues in Manufacturing. (3)

IEE 672 Advanced Topics in Experimental Design. (3)
spring in even years
Engineering applications of factorial and fractional factorial designs with randomization restrictions, analysis techniques in parameter comparison, missing data, unbalanced designs. Prerequisite: IEE 572.

IEE 677 Regression and Linear Models. (3)
spring in odd years
General linear models, applications, theory, including least squares, maximum likelihood estimation, properties of estimators, likelihood ratio tests, and computational procedures. Prerequisite: IEE 578.

IEE 679 Time Series Analysis and Control. (3)
fall in even years
Identification, estimation, diagnostic checking techniques for ARIMA models, transfer functions, multiple time series models for feedback and feedforward control schemes. Prerequisite: IEE 579.

IEE 681 Reliability, Availability, and Serviceability. (3)
fall in even years
Organizing hardware and software, integrity and fault-tolerant design, maintenance design and strategy, Markov models, fault-free analysis, and military standards. Prerequisite: IEE 573.

Department of Mechanical and Aerospace Engineering
(ECG 346) 480/965-3291
www.eas.asu.edu/~mae

PROFESSORS
BOYER, CHATTOPADHYAY, DAVIDSON, EVANS, FERNANDO, JANKOWSKI, KRAJCINOVIC, LAANANEN, LIU, MIGNOLET, PECK, REED, ROY, SARIC, SHAH, SIERADZKI, TSENG, WIE, YAO

ASSOCIATE PROFESSORS
CHEN, KOURIS, KUO, LEE, PHelan, RANKIN, SQUIRES, WELLS

ASSISTANT PROFESSORS
CHAPSKY, FUSELL, MCNEILL, PERALTA, SUGAR

The Department of Mechanical and Aerospace Engineering is the administrative home for two undergraduate majors: Aerospace Engineering and Mechanical Engineering. Consistent with the department’s mission to provide the best possible education to its students, a department goal is to attract and retain—from the metropolitan community, the state, and the country—outstanding and diverse students and to give each the opportunity to become competent in contemporary subjects that bear on an engineering career. This goal is achieved through a curriculum designed to accomplish the following four objectives:

1. **Technical Competency.** Graduates are able to model and predict the behavior of engineering systems by applying the fundamental principles from mathematics, physics, and chemistry and by using modern computational and experimental tools.

2. **Product Realization Ability.** Graduates are able to design components or systems at the conceptual and embodiment design level including the issues of production, manufacturability, and cost.
3. **Communication Skills.** Graduates can present and document effectively, using both oral and written communication, their work and ideas to a diverse audience.

4. **Professionalism.** Graduates are prepared for modern engineering practice by working in teams, keeping technologically abreast, and having an understanding of related ethical, environmental, and societal issues.

The Aerospace Engineering major provides students an education in technological areas critical to the design and development of aerospace vehicles and systems. Aerospace Engineering graduates are typically employed in aerospace industries or at government laboratories (e.g., NASA). The Mechanical Engineering major is perhaps one of the most broadly applicable programs in engineering, providing education for a wide variety of employment opportunities.

The two majors can serve as entry points to immediate professional employment or to graduate study. The emphasis in all fields is on the development of fundamental knowledge that will have long-lasting utility in a rapidly changing technical society.

DEGREE REQUIREMENTS

All degree programs in the department require that students attain a minimum GPA of 2.00 in the engineering core and in the major and take a minimum of 50 upper-division semester hours in order to be eligible for graduation. Also, the department may require additional or remedial coursework for those students who have demonstrated a trend toward academic difficulties.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

COURSE REQUIREMENTS

General Studies

See “Course Requirements,” page 213, for General Studies, school, and engineering core course requirements.

Engineering Core

Students in the Department of Mechanical and Aerospace Engineering are required to take the following from among the choices shown under “Engineering Core Requirement,” page 213, as part of the engineering core requirements:

- ECE 100 Introduction to Engineering Design CS4
- ECE 201 Electrical Networks I ..4
- ECE 210 Engineering Mechanics I: Statics3
- ECE 212 Engineering Mechanics II: Dynamics3
- ECE 300 Intermediate Engineering Design L3
- ECE 313 Introduction to Deformable Solids3
- ECE 340 Thermodynamics ...3
- ECE 350 Structure and Properties of Materials3

Total ..26

AEROSPACE ENGINEERING—B.S.E.

The goal of the Aerospace Engineering program is to provide students with an education in technological areas critical to the design and development of aerospace vehicles and systems. The program emphasizes aeronautical engineering topics in required courses covering aerodynamics, aerospace materials, propulsion, flight mechanics, aircraft performance, and stability and control. Astronautic topics such as orbital mechanics, attitude dynamics, spacecraft control, and rocket propulsion are also covered in required courses.

Design is integrated throughout the curriculum beginning with ECE 100 Introduction to Engineering Design and followed later by ECE 300 Intermediate Engineering Design, both of which focus on basic design theory as well as professional practice. These required courses are followed by topic-specific design content in aerospace engineering courses in the junior and senior years. The senior capstone design course integrates design and analysis topics from the earlier courses and completes the required design sequence. This sequence includes a minimum of one-half year of required design. In addition, many of the aerospace technical electives have design content.

Laboratory experience is provided in the areas of aerodynamics, aerospace structures, and vibrations. Laboratory facilities include four major wind tunnels, an integrated mechanical-testing laboratory, a controls laboratory, and a vibrations laboratory.

Aerospace Engineering Major

Aerospace Engineering students are required to take the following two courses in addition to those required for the major:

- MAT 242 Elementary Linear Algebra2
- PHY 361 Introductory Modern Physics3

The Aerospace Engineering major consists of the following courses:

- ECE 384 Numerical Methods for Engineers4
- MAE 317 Dynamic Systems and Control3
- MAE 319 Measurements and Data Analysis3
- MAE 361 Aerodynamics I ...3
- MAE 413 Aircraft Performance, Stability, and Control3
- MAE 415 Vibration Analysis ...4
- MAE 425 Aerospace Structures ..4
- MAE 444 Fundamentals of Aerospace Design3
- MAE 460 Gas Dynamics ..3
- MAE 462 Space Vehicle Dynamics and Control3
- MAE 463 Propulsion ..3
- MAE 464 Aerospace Laboratory ..3
- MAE 468 Aerospace Systems Design L3
- Area of study (technical electives)7

Total ..49

Aerospace Engineering Areas of Study

To further the design experience, all Aerospace Engineering students must choose at least one technical elective from the following list of courses:

- MAE 426 Design of Aerospace Structures3
- MAE 465 Rocket Propulsion ..3

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 74. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
The remaining technical elective(s) may be selected from any of the courses listed in the following course tables or from courses listed under the Mechanical Engineering areas of study. The courses are grouped so that the student may select an elective package of closely related courses. A student may, with prior approval of the advisor and department, select a general area and a corresponding set of courses not listed that would support a career objective not covered by the categories shown below. Note: MAE 371 may not be substituted for MAE 361, MAE 422 may not be substituted for MAE 425, and MAE 441 may not be substituted for MAE 444.

Aerodynamics
Select from these courses:

- MAE 372 Fluid Mechanics
- MAE 435 Turbomachinery
- MAE 461 Aerodynamics II
- MAE 463 Propulsion
- MAE 466 Rotary Wing Aerodynamics and Performance
- MAE 471 Computational Fluid Dynamics
- MAE 490 Projects in Design and Development
- MAT 421 Applied Computational Methods

Aerospace Materials
Select from these courses:

- MAE 455 Polymers and Composites
- MSE 355 Introduction to Materials Science and Engineering
- MSE 420 Physical Metallurgy
- MSE 440 Mechanical Properties of Solids
- MSE 441 Analysis of Material Failures
- MSE 450 X-ray and Electron Diffraction
- MSE 471 Introduction to Ceramics

Aerospace Structures
Select from these courses:

- MAE 404 Finite Elements in Engineering
- MAE 426 Design of Aerospace Structures
- MAE 455 Polymers and Composites
- MAE 490 Projects in Design and Development

Computer Methods
Select from these courses:

- ASE 485 Engineering Statistics
- CSE 310 Data Structures and Algorithms
- CSE 422 Microprocessor System Design
- CSE 428 Computer-Aided Processes
- IEE 463 Computer-Aided Manufacturing and Control
- IEE 475 Simulating Stochastic Systems
- MAE 404 Finite Elements in Engineering
- MAE 406 CAD/CAM Applications in MAE
- MAE 471 Computational Fluid Dynamics
- MAE 541 CAD Tools for Engineers
- MAT 421 Applied Computational Methods
- MAT 423 Numerical Analysis I
- MAT 425 Numerical Analysis II

Design
Select from these courses:

- MAE 341 Mechanism Analysis and Design
- MAE 404 Finite Elements in Engineering
- MAE 406 CAD/CAM Applications in MAE
- MAE 426 Design of Aerospace Structures
- MAE 435 Turbomachinery
- MAE 442 Mechanical Systems Design
- MAE 446 Thermal Systems Design
- MAE 455 Polymers and Composites
- MAE 466 Rotary Wing Aerodynamics and Performance
- MAE 467 Aircraft Performance
- MAE 490 Projects in Design and Development
- MSE 440 Mechanical Properties of Solids
- MSE 441 Analysis of Material Failures

Mechanical
Any courses listed under the Mechanical Engineering concentrations except MAE 371, 422, and 441 may be selected.

Propulsion
Select from these courses:

- MAE 382 Thermodynamics
- MAE 388 Heat Transfer
- MAE 434 Internal Combustion Engines
- MAE 435 Turbomachinery
- MAE 436 Combustion
- MAE 461 Aerodynamics II
- MAE 465 Rocket Propulsion
- MAE 466 Rotary Wing Aerodynamics and Performance
- MAE 471 Computational Fluid Dynamics
- MAE 490 Projects in Design and Development

System Dynamics and Control
Select from these courses:

- CSE 428 Computer-Aided Processes
- EEE 480 Feedback Systems
- EEE 482 Introduction to State Space Methods
- MAE 417 Control System Design
- MAE 447 Robotics and Its Influence on Design
- MAE 469 Projects in Astronautics or Aeronautics
- MAE 490 Projects in Design and Development

TYPICAL FOUR-YEAR SEQUENCE

The first two years are usually devoted to the General Studies and engineering core requirements. Thus, the degree programs in the department share essentially the same course schedule for that period of time. A typical schedule is given below.

Aerospace Engineering Program of Study

Typical Four-Year Sequence

First Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>CHM 114 General Chemistry for Engineers</td>
</tr>
<tr>
<td></td>
<td>or CHM 116 General Chemistry</td>
</tr>
<tr>
<td></td>
<td>ECE 100 Introduction to Engineering Design</td>
</tr>
<tr>
<td></td>
<td>or HU/US elective</td>
</tr>
<tr>
<td></td>
<td>TOT</td>
</tr>
<tr>
<td>Second Semester</td>
<td>ENG 102 First-Year Composition</td>
</tr>
<tr>
<td></td>
<td>MAT 270 Calculus with Analytic Geometry I</td>
</tr>
<tr>
<td></td>
<td>TOT</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Semester</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Semester</td>
<td>ECE 210 Engineering Mechanics I: Statics</td>
</tr>
<tr>
<td></td>
<td>ECE 350 Structure and Properties of Materials</td>
</tr>
<tr>
<td></td>
<td>MAT 272 Calculus with Analytic Geometry III</td>
</tr>
<tr>
<td></td>
<td>MAT 274 Elementary Differential Equations</td>
</tr>
</tbody>
</table>
For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.

MECHANICAL ENGINEERING—B.S.E.

Mechanical engineering is a creative discipline that draws upon a number of basic sciences to design the devices, machines, processes, and systems that involve mechanical work and its conversion from and into other forms. It includes the conversion of thermal, chemical, and nuclear energy into mechanical energy through various engines and power plants; the transport of energy via devices such as heat exchangers, pipelines, gears, and linkages; and the use of energy to perform a variety of tasks for the benefit of society, such as in transportation vehicles of all types, manufacturing tools and equipment, and household appliances. Furthermore, since all hardware products must be constructed of solid materials and because most products contain parts that transmit forces, mechanical engineering is involved in the structural integrity and materials selection for almost every product on the market.

Mechanical engineers are employed in virtually every kind of industry. They are involved in seeking new knowledge through research, in generating creative design and development, and in the production, control, management, and sales of the devices and systems needed by society. Therefore, a major strength of a mechanical engineering education is the flexibility it provides in future employment opportunities for its graduates.

The undergraduate curriculum includes the study of the principles governing the use of energy; the principles of design, instruments and control devices; and the application of these studies to the creative solution of practical, modern problems.

Design is integrated throughout the curriculum, beginning with ECE 100 Introduction to Engineering Design and followed later by ECE 300 Intermediate Engineering Design, both of which focus on basic design theory as well as professional practice. These required courses are followed by topic specific design content in mechanical engineering courses in the junior and senior years. The senior capstone design course combines the design topics from the earlier courses and completes the required design sequence. In addition, many of the mechanical technical electives have design content.

Laboratory experience is provided in the areas of thermal fluid systems, mechanics of materials, and controls. Laboratory facilities include a thermal systems laboratory, an integrated mechanical-testing laboratory, a controls laboratory, and a manufacturing laboratory.

Mechanical Engineering Major

Mechanical Engineering students are required to select the following supplemental courses:

- ECE 384 Numerical Methods for Engineers ..4
- MAT 242 Elementary Linear Algebra..2
- PHY 361 Introductory Modern Physics ...3

The Mechanical Engineering major requires the following departmental courses:

- MAE 317 Dynamic Systems and Control ..3
- MAE 319 Measurements and Data Analysis3
- MAE 371 Fluid Mechanics ..3
- MAE 388 Heat Transfer ..3
- MAE 422 Mechanics of Materials ...4
- MAE 441 Principles of Design ...3
- MAE 443 Engineering Design ..3
- MAE 490 Projects in Design and Development L..........................3
- MAE 491 Experimental Mechanical Engineering3
- Area of study (technical electives) ..17

Total ...45

Mechanical Engineering Areas of Study

Technical electives may be selected from among any of the following courses or from courses listed under the Aerospace Engineering areas of study. The courses are

PHY 131 University Physics II: Electricity and Magnetism SQ3
PHY 132 University Physics Laboratory II SQ ...1

Second Semester

- ECE 201 Electrical Networks I ..4
- ECE 212 Engineering Mechanics II: Dynamics3
- ECE 313 Introduction to Deformable Solids3
- ECE 340 Thermodynamics ..3
- ECE 384 Numerical Methods for Engineers4

Total ...17

First Semester

- ECE 300 Intermediate Engineering Design L3
- MAE 317 Dynamic Systems and Control ...3
- MAE 319 Measurements and Data Analysis3
- MAE 361 Aerodynamics I ..3
- MAE 425 Aerospace Structures ..4

Total ...16

Third Year

Second Semester

- MAE 413 Aircraft Performance, Stability, and Control3
- MAE 444 Fundamentals of Aerospace Design3
- MAE 460 Gas Dynamics ...3
- PHY 361 Introductory Modern Physics ..3
- HU/SB and awareness area course ..3

Total ...15

First Semester

- MAE 415 Vibration Analysis ..4
- MAE 462 Space Vehicle Dynamics and Control3
- MAE 463 Propulsion ...3
- MAE 464 Aerospace Laboratory ..3
- HU/SB and awareness area course ..3

Total ...16

Fourth Year

Second Semester

- MAE 468 Aerospace Systems Design L ..3
- HU/SB and awareness area courses ..6
- Required design technical elective ..3
- Technical elective(s) ..4

Total ...16

Note:
1 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to satisfy HU or SB requirements.
2 Both PHY 121 and 122 must be taken to secure SQ credit.
3 Both PHY 131 and 132 must be taken to secure SQ credit.
grouped to assist a student in identifying areas of specialization. Students preferring a broader technical background may choose courses from different areas. Generally, no more than two technical elective courses from outside the department are allowed. Credit for courses not on the list requires prior approval of the advisor and department. Mechanical Engineering students may not use MAE 361, 425, or 444 to fulfill degree requirements.

Aerospace. Any courses listed under the Aerospace Engineering areas of study except MAE 361, 425, and 444 may be selected.

Biomechanical. Select from these courses:

- BME 411 Biomedical Engineering I .. 3
- BME 412 Biomedical Engineering II ... 3
- BME 416 Biomechanics ... 3
- BME 419 Biocontrol Systems ... 3
- EEE 302 Electrical Networks II .. 3
- EEE 434 Quantum Mechanics for Engineers 3

Computer Methods. Select from these courses:

- ASE 485 Engineering Statistics CS.. 3
- CSE 310 Data Structures and Algorithms 3
- CSE 422 Microprocessor System Design II 4
- CSE 428 Computer-Aided Processes ... 3
- IEE 463 Computer-Aided Manufacturing and Control CS 3
- IEE 475 Simulating Stochastic Systems CS 3
- MAE 404 Finite Elements in Engineering 3
- MAE 406 CAD/CAM Applications in MAE 3
- MAE 471 Computational Fluid Dynamics 3
- MAE 541 CAD Tools for Engineers ... 3
- MAT 421 Applied Computational Methods CS 3
- MAT 423 Numerical Analysis I CS ... 3
- MAT 425 Numerical Analysis II CS ... 3

Control and Dynamic Systems. Select from these courses:

- CSE 428 Computer-Aided Processes ... 3
- EEE 360 Energy Conversion and Transport 4
- IEE 463 Computer-Aided Manufacturing and Control CS 3
- MAE 413 Aircraft Performance, Stability, and Control 3
- MAE 417 Control System Design .. 3
- MAE 462 Space Vehicle Dynamics and Control 3
- MAE 467 Aircraft Performance ... 3

Design. Select from these courses:

- MAE 341 Mechanism Analysis and Design 3
- MAE 351 Manufacturing Processes ... 3
- MAE 404 Finite Elements in Engineering 3
- MAE 406 CAD/CAM Applications in MAE 4
- MAE 413 Aircraft Performance, Stability, and Control 3
- MAE 417 Control System Design .. 3
- MAE 434 Internal Combustion Engines 3
- MAE 435 Turbomachinery .. 3
- MAE 442 Mechanical Systems Design .. 3
- MAE 446 Thermal Systems Design ... 3
- MAE 447 Robotics and Its Influence on Design 3
- MAE 462 Space Vehicle Dynamics and Control 3
- MAE 467 Aircraft Performance ... 3

Energy Systems. Select from these courses:

- EEE 360 Energy Conversion and Transport 4
- MAE 372 Fluid Mechanics ... 3
- MAE 382 Thermodynamics ... 3
- MAE 434 Internal Combustion Engines 3
- MAE 435 Turbomachinery .. 3

Engineering Mechanics. Select from these courses:

- MAE 341 Mechanism Analysis and Design 3
- MAE 404 Finite Elements in Engineering 3
- MAE 413 Aircraft Performance, Stability, and Control 3
- MAE 417 Control System Design .. 3
- MAE 426 Design of Aerospace Structures 3
- MAE 442 Mechanical Systems Design .. 3
- MAE 460 Gas Dynamics .. 3
- MAE 461 Aerodynamics II ... 3
- MAE 471 Computational Fluid Dynamics 3
- MAT 421 Applied Computational Methods CS 3
- MAT 423 Numerical Analysis I CS ... 3
- MSE 440 Mechanical Properties of Solids 3

Manufacturing. Select from these courses:

- CSE 428 Computer-Aided Processes ... 3
- IEE 300 Economic Analysis for Engineers 3
- IEE 374 Quality Control CS ... 3
- IEE 461 Production Control ... 3
- IEE 463 Computer-Aided Manufacturing and Control CS 3
- MAE 341 Mechanism Analysis and Design 3
- MAE 351 Manufacturing Processes ... 3
- MAE 404 Finite Elements in Engineering 3
- MAE 442 Mechanical Systems Design .. 3
- MAE 447 Robotics and Its Influence on Design 3
- MAE 455 Polymers and Composites ... 3
- MSE 355 Introduction to Materials Science and Engineering 3
- MSE 420 Physical Metallurgy ... 3
- MSE 431 Corrosion and Corrosion Control 3
- MSE 440 Mechanical Properties of Solids 3

Stress Analysis, Failure Prevention, and Materials. Select from these courses:

- MAE 341 Mechanism Analysis and Design 3
- MAE 404 Finite Elements in Engineering 3
- MAE 426 Design of Aerospace Structures 3
- MAE 447 Robotics and Its Influence on Design 3
- MAE 455 Polymers and Composites ... 3
- MSE 355 Introduction to Materials Science and Engineering 3
- MSE 420 Physical Metallurgy ... 3
- MSE 431 Corrosion and Corrosion Control 3
- MSE 440 Mechanical Properties of Solids 3
- MSE 450 X-ray and Electron Diffraction 3

Thermosciences. Select from these courses:

- MAE 372 Fluid Mechanics ... 3
- MAE 382 Thermodynamics ... 3
- MAE 433 Air Conditioning and Refrigeration 3
- MAE 434 Internal Combustion Engines 3
- MAE 435 Turbomachinery .. 3
- MAE 436 Combustion ... 3
- MAE 446 Thermal Systems Design ... 3
- MAE 460 Gas Dynamics .. 3
- MAE 463 Propulsion ... 3
- MAE 471 Computational Fluid Dynamics 3

Mechanical Engineering Program of Study

Typical Four-Year Sequence

First Year

First Semester

- CHM 114 General Chemistry for Engineers SQ 4
- or CHM 116 General Chemistry SQ (4)
Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENG 102</td>
<td>First-Year Composition</td>
<td>3</td>
</tr>
<tr>
<td>MAT 242</td>
<td>Elementary Linear Algebra</td>
<td>2</td>
</tr>
<tr>
<td>MAT 271</td>
<td>Calculus with Analytic Geometry II MA</td>
<td>4</td>
</tr>
<tr>
<td>PHY 121</td>
<td>University Physics I: Mechanics SQ</td>
<td>3</td>
</tr>
<tr>
<td>PHY 122</td>
<td>University Physics Laboratory I SQ</td>
<td>1</td>
</tr>
<tr>
<td>HU/SB and awareness area course¹</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>or ECE 100 Introduction to Engineering Design CS (4)</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Total: 17

Third Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECE 300</td>
<td>Intermediate Engineering Design L</td>
<td>3</td>
</tr>
<tr>
<td>MAE 317</td>
<td>Dynamic Systems and Control</td>
<td>3</td>
</tr>
<tr>
<td>MAE 319</td>
<td>Measurements and Data Analysis</td>
<td>3</td>
</tr>
<tr>
<td>MAE 371</td>
<td>Fluid Mechanics</td>
<td>3</td>
</tr>
<tr>
<td>MAE 422</td>
<td>Mechanics of Materials</td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 16

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 388</td>
<td>Heat Transfer</td>
<td>3</td>
</tr>
<tr>
<td>MAE 441</td>
<td>Principles of Design</td>
<td>3</td>
</tr>
<tr>
<td>HU/SB and awareness area courses¹</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Technical elective(s)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 16

Fourth Year

First Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 491</td>
<td>Experimental Mechanical Engineering</td>
<td>3</td>
</tr>
<tr>
<td>PHY 361</td>
<td>Introductory Modern Physics</td>
<td>3</td>
</tr>
<tr>
<td>HU/SB and awareness area course¹</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>Technical elective(s)</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Total: 16

Second Semester

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE 443</td>
<td>Engineering Design</td>
<td>3</td>
</tr>
<tr>
<td>MAE 490</td>
<td>Projects in Design and Development L</td>
<td>3</td>
</tr>
<tr>
<td>HU/SB and awareness area course¹</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total: 9

Technical electives: 6

Total: 15

1. Engineering students may not use aerospace studies (AES) or military science (MIS) courses to satisfy HU or SB requirements.
2. Both PHY 121 and 122 must be taken to secure SQ credit.
3. Both PHY 131 and 132 must be taken to secure SQ credit.

MECHANICAL AND AEROSPACE ENGINEERING (MAE)

MAE 317 Dynamic Systems and Control. (3)

Fall and spring

Modeling and representations of dynamic physical systems, including transfer functions, block diagrams, and state equations. Transient response, Principles of feedback control and linear system analysis, including root locus and frequency response. Prerequisite: ECE 312. Pre- or corequisite: ECE 386.

MAE 319 Measurements and Data Analysis. (3)

Fall and spring

Theory of measurement systems, sensors, digital data acquisition, signal processing and statistical analysis. Computer simulations and real-time experiments designed to illustrate these topics. Lecture, lab. Prerequisite: ECE 201. Pre- or corequisite: MAE 317.

MAE 341 Mechanism Analysis and Design. (3)

Once a year

Positions, velocities, and accelerations of machine parts; cams, gears, flexible connectors, and rolling contact; introduction to synthesis. Prerequisite: ECE 312.

MAE 351 Manufacturing Processes. (3)

Fall and spring

Production technique and equipment. Casting and molding, forming, machining, joining and assembly, computer-integrated manufacturing, rapid prototyping, and electronics manufacturing. Cross-listed as IEE 360. Credit is allowed for only IEE 360 or MAE 351. Prerequisite: ECE 350.

MAE 361 Aerodynamics I. (3)

Once a year

Fluid statics, conservation principles, stream function, velocity potential, vorticity, inviscid flow, Kutta-Joukowski, thin-airfoil theory, and panel methods. Prerequisites: ECE 312, 340.

MAE 371 Fluid Mechanics. (3)

Fall and spring

Introductory concepts of fluid motions; fluid statics; control volume forms of basic principles; viscous internal flows. Prerequisites: ECE 312, 340.

MAE 372 Fluid Mechanics. (3)

Once a year

Applies basic principles of fluid mechanics to problems in viscous and compressible flow. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 382 Thermodynamics. (3)

Once a year

Applied thermodynamics; gas mixtures, psychrometrics, property relationships, power and refrigeration cycles, and reactive systems. Prerequisite: ECE 340.

MAE 388 Heat Transfer. (3)

Fall and spring

Steady and unsteady heat conduction, including numerical solutions; thermal boundary layer concepts and applications to free and forced convection. Thermal radiation concepts. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 402 Introduction to Continuum Mechanics. (3)

Once a year

Applies the principles of continuum mechanics to such fields as flow-in porous media, biomechanics, electromagnetic continua, and magneto-fluid mechanics. Prerequisites: ECE 313; MAE 361 (or 371); MAT 242 (or 342).
MAE 404 Finite Elements in Engineering. (3)
Once a year
Introduction to ideas and methodology of finite element analysis. Applications to solid mechanics, heat transfer, fluid mechanics, and vibrations. Prerequisites: ECE 313; MAT 242 (or 342).

MAE 406 CAD/CAM Applications in MAE. (4)
Once a year
Solution of engineering problems with the aid of state-of-the-art software tools in solid modeling, engineering analysis, and manufacturing; selection of modeling parameters; reliability tests on software. 3 hours lecture, 3 hours lab. Prerequisites: MAE 441; instructor approval.

MAE 413 Aircraft Performance, Stability, and Control. (3)
Spring
Aircraft performance, cruise, climbing and turning flights, energy maneuverability, 6 DOF equations for aircraft, aerodynamic stability derivatives, flight stability/control. Prerequisites: MAE 317, 361.

MAE 415 Vibration Analysis. (4)
Fall
Free and forced response of single and multiple degree of freedom systems, continuous systems; applications in mechanical and aerospace systems numerical methods. Lecture, lab. Prerequisites: MAE 312; MAE 319, 422 (or 425); MAT 242 (or 342).

MAE 417 Control System Design. (3)
Once a year
Tools and methods of control system design and compensation, including simulation, response optimization, frequency domain techniques, state variable feedback, and sensitivity analysis. Introduction to nonlinear and discrete time systems. Prerequisite: MAE 317.

MAE 422 Mechanics of Materials. (4)
Fall and spring
Failure theories, energy methods, finite element methods, plates, torsion of noncircular members, unsymmetrical bending, shear center, and beam column. Lecture, lab. Prerequisites: ECE 313; MAT 242 (or 342). Pre- or corequisite: ECE 384.

MAE 425 Aerospace Structures. (4)
Fall
Stability, energy methods, finite element methods, torsion, unsymmetrical bending and torsion of multicelled structures, design of aerospace structures. Lecture, lab. Prerequisites: ECE 313; MAT 242 (or 342).

MAE 426 Design of Aerospace Structures. (3)
Once a year
Flight vehicle loads, design of semimonocoque structures, local buckling and crippling, fatigue, aerospace materials, composites, joints, and finite element applications. Prerequisites: MAE 361, 425.

MAE 433 Air Conditioning and Refrigeration. (3)
Once a year
Air conditioning processes; environmental control; heating and cooling loads; psychrometry; refrigeration cycles. Prerequisite: MAE 388 or MET 432 or instructor approval.

MAE 434 Internal Combustion Engines. (3)
Once a year

MAE 435 Turbomachinery. (3)
Once a year
Design and performance of turbomachines, including steam, gas and hydraulic turbines, centrifugal pumps, compressors, fans, and blowers. Pre- or corequisite: MAE 361 or 371.

MAE 436 Combustion. (3)
Once a year
Thermochemical and reaction rate processes; combustion of gaseous and condensed-phase fuels. Applications to propulsion and heating systems. Pollutant formation. Prerequisite: MAE 388.

MAE 441 Principles of Design. (3)
Fall and spring
Conceptual and embodiment design of mechanical elements; form synthesis; material selection, failure modes, manufacturability tolerances, common mechanisms, and machine elements. Lecture, lab (project). Prerequisites: ECE 300, 350. Pre- or corequisites: MAE 319, 422 (or 425).

MAE 442 Mechanical Systems Design. (3)
Once a year
Applies design principles and techniques to the synthesis, modeling, and optimization of mechanical, electromechanical, and hydraulic systems. Prerequisites: MAE 422 (or 425), 441.

MAE 443 Engineering Design. (3)
Fall and spring
Group projects to design engineering components and systems. Problem definition ideation, modeling, and analysis; emphasizes decision making and documentation activities. 6 hours lab. Prerequisite: MAE 441.

MAE 444 Fundamentals of Aerospace Design. (3)
Spring
Design theory and design tools applied to aerospace engineering. Engineering drawings, solid modeling, RFP’s, Federal Aviation Regulations and military specifications, aircraft sizing, rapid prototyping. Lab, projects. Prerequisites: ECE 300, 350; MAE 319, 361, 425. Pre- or corequisite: MAE 413.

MAE 446 Thermal Systems Design. (3)
Once a year
Applies engineering principles and techniques to the modeling and analysis of thermal systems and components. Presents and demonstrates optimization techniques and their use. Prerequisite: ECE 300; MAE 388.

MAE 447 Robotics and Its Influence on Design. (3)
Once a year
Robot applications, configurations, singular positions, and workspace; modes of control; vision; programming exercises; design of parts for assembly. Prerequisite: MAE 317.

MAE 455 Polymers and Composites. (3)
Fall
Relationship between chemistry, structure, and properties of engineering polymers. Design, properties, and behavior of fiber composite systems. Cross-listed as MSE 470. Credit is allowed for only MAE 455 or MSE 470. Prerequisite: ECE 350.

MAE 460 Gas Dynamics. (3)
Spring
Compressible flow at subsonic and supersonic speeds; duct flow; normal and oblique shocks, perturbation theory, and wind tunnel design. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 461 Aerodynamics I. (3)
Once a year
Transonic/hypersonic flows, wing theory, Navier-Stokes, laminar/turbulent shear flows, pressure drop in tubes, separation, drag, viscous/inviscid interaction, and wing design. Prerequisite: MAE 460.

MAE 462 Space Vehicle Dynamics and Control. (3)
Fall
Attitude dynamics and control, launch vehicles, orbital mechanics, orbital transfer/rendezvous, space mission design, space structures, spacecraft control systems design. Prerequisite: MAE 317.

MAE 463 Propulsion. (3)
Fall
Fundamentals of gas-turbine engines and design of components. Principles and design of rocket propulsion and alternative devices. Lecture, design projects. Prerequisites: ECE 384; MAE 382 (or 460).

MAE 464 Aerospace Laboratory. (3)
Fall
Aerodynamic flow parameters; flow over airfoils and bodies of revolution; flow visualization; computer-aided data acquisition and processing; boundary layer theory. 1 hour lecture, 4 hours lab. Prerequisites: ECE 384; MAE 319, 460.

MAE 465 Rocket Propulsion. (3)
Once a year
Rocket flight performance; nozzle design; combustion of liquid and solid propellants; component design; advanced propulsion systems; interplanetary missions; testing. Prerequisite: MAE 382 or 460.

MAE 466 Rotary Wing Aerodynamics and Performance. (3)
Once a year
Introduction to helicopter and propeller analysis techniques. Momentum, blade-element, and vortex methods. Hover and forward flight. Ground effect, autorotation, and compressibility effects. Prerequisites: both ECE 384 and MAE 361 or only instructor approval.
MAE 467 Aircraft Performance. (3)
fall
Integration of aerodynamic and propulsive forces into aircraft performance design. Estimation of drag parameters for design. Engine, airfoil selection. Conceptual design methodology, Lecture, design projects. Prerequisite: MAE 361 or 371. Pre- or corequisite: MAE 444.

MAE 468 Aerospace Systems Design. (3)
fall and spring
Group projects related to aerospace vehicle design, working from mission definition and continuing through preliminary design. Prerequisites: MAE 413, 444. Pre- or corequisite: MAE 463.

General Studies:
L

MAE 469 Projects in Astronautics or Aeronautics. (3)
fall and spring
Various multidisciplinary team projects available each semester. Projects include design of high-speed rotocraft autonomous vehicles, liquid-fueled rockets, microaerial vehicles, satellites. Prerequisite: instructor approval.

MAE 471 Computational Fluid Dynamics. (3)
fall
Numerical solutions for selected problems in fluid mechanics. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 490 Projects in Design and Development. (3)
fall and spring
Capstone projects in fundamental or applied aspects of engineering. Prerequisites: MAE 441, 491.

General Studies:
L

MAE 491 Experimental Mechanical Engineering. (3)
fall and spring
Experimental and analytical studies of phenomena and performance of fluid flow, heat transfer, thermodynamics, refrigeration, and mechanical power systems. 6 hours lab. Prerequisites: MAE 319, 388.

MAE 498 Pro-Seminar. (1–3)
not regularly offered
Special topics for advanced students. Applies the engineering disciplines to design and analysis of modern technical devices and systems. Prerequisite: instructor approval.

MAE 504 Laser Diagnostics. (3)
spring

MAE 505 Perturbation Methods. (3)
not regularly offered
Nonlinear oscillations, strained coordinates, renormalization, multiple scales, boundary layers, matched asymptotic expansions, turning point problems, and WKBJ method. Cross-listed as MAT 505. Credit is allowed for only MAE 505 or MAT 505.

MAE 506 Advanced System Modeling, Dynamics, and Control. (3)
spring
Lumped-parameter modeling of physical systems with examples. State variable representations and dynamic response. Introduction to modern control. Prerequisite: ASE 582 or MAT 442.

MAE 507 Optimal Control. (3)
fall
Optimal control of systems. Calculus of variations, dynamic programming, linear quadratic regulator, numerical methods, and Pontryagin’s principle. Cross-listed as EEE 587. Credit is allowed for only EEE 587 or MAE 507. Prerequisite: EEE 482 or MAE 506.

MAE 509 Robust Multivariable Control. (3)
spring
Characterization of uncertainty in feedback systems, robustness analysis, synthesis techniques, multivariable Nyquist criteria, computer-aided analysis and design. Prerequisites: MAE 417, 506.

MAE 510 Dynamics and Vibrations. (3)
fall
Lagrange’s and Hamilton’s equations, rigid body dynamics, gyroscopic motion, and small oscillation theory.

MAE 511 Acoustics. (3)
fall
Principles underlying the generation, transmission, and reception of acoustic waves. Applications to noise control, architectural acoustics, random vibrations, and acoustic fatigue.

MAE 512 Random Vibrations. (3)
spring
Review of probability theory, random processes, stationarity, power spectrum, white noise process, random response of single and multiple DOF systems, and Markov processes simulation. Prerequisite: MAE 510 or instructor approval.

MAE 515 Structural Dynamics. (3)
spring
Free vibration and forced response of discrete and continuous systems, exact and approximate methods of solution, finite element modeling, and computational techniques. Prerequisite: MAE 510 or instructor approval.

MAE 518 Dynamics of Rotor-Bearing Systems. (3)
spring

MAE 520 Solid Mechanics. (3)
fall
Introduction to tensors: kinematics, kinetics, and constitutive assumptions leading to elastic, plastic, and viscoelastic behavior. Applications.

MAE 521 Structural Optimization. (3)
not regularly offered
Linear and nonlinear programming. Problem formulation. Constrained and unconstrained optimization. Sensitivity analysis. Approximate techniques. FEM-based optimal design of mechanical and aerospace structures. Cross-listed as CEE 533. Credit is allowed for only CEE 533 or MAE 521. Prerequisite: instructor approval.

MAE 523 Theory of Plates and Shells. (3)
fall
Linear and nonlinear theories of plates. Membrane and bending theories of shells. Shells of revolution. Prerequisite: MAE 520.

MAE 524 Theory of Elasticity. (3)
spring
Formulation and solution of 2- and 3-dimensional boundary value problems. Prerequisite: MAE 520.

MAE 527 Finite Element Methods in Engineering Science. (3)
fall
Discretization, interpolation, elemental matrices, assembly, and computer implementation. Application to solid and fluid mechanics, heat transfer, and time-dependent problems. Prerequisite: ASE 582.

MAE 536 Combustion. (3)
not regularly offered

MAE 540 Advances in Engineering Design Theory. (3)
fall
Survey of research in engineering design process, artifact and design, knowledge, formal and informal logic, heuristic and numerical searches, theory of structure and complexity. Prerequisite: graduate standing.

MAE 541 CAD Tools for Engineers. (3)
fall
Elements of computer techniques required to develop CAD software. Data structures, including lists, trees, and graphs. Computer graphics, including 2- and 3-dimensional algorithms and user interface techniques.

MAE 542 Geometric Modeling in CAD/CAM. (3)
spring
Geometric and solid modeling, curve and surface design, CAD database architectures, and integration of solid modeling into engineering processes. Prerequisite: MAE 541 or instructor approval.
MAE 544 Mechanical Design and Failure Prevention. (3) fall
Modes of mechanical failure; application of principles of elasticity and plasticity in multiaxial state of stress to design synthesis; failure theories; fatigue; creep; impact. Prerequisite: MAE 443.

MAE 546 CAD/CAM Applications in MAE. (4) fall
Solution of engineering problems with the aid of state-of-the-art software tools in solid modeling, engineering analysis, and manufacturing; selection of modeling parameters; reliability tests on software. Open only to students without previous credit for MAE 406. 3 hours lecture, 3 hours lab. Prerequisite: instructor approval.

MAE 547 Mechanical Design and Control of Robots. (3) not regularly offered
Homogeneous transformations, 3-dimensional kinematics, geometry of motion, forward and inverse kinematics, workspace and motion trajectories, dynamics, control, and static forces.

MAE 548 Mechanism Synthesis and Analysis. (3) spring
Algebraic and graphical methods for exact and approximate synthesis of cam, gear, and linkage mechanisms; design optimization; methods of planar motion analysis; characteristics of plane motion; spatial kinematics.

MAE 557 Mechanics of Composite Materials. (3) spring
Analysis of composite materials and applications. Micromechanical and macromechanical behavior. Classical lamina theory developed with investigation of bending-extension coupling.

MAE 560 Propulsion Systems. (3) not regularly offered
Design of air-breathing gas turbine engines for aircraft propulsion; mission analysis; cycle analysis; engine sizing; component design.

MAE 561 Computational Fluid Dynamics. (3) spring
Finite-difference and finite-volume techniques for solving the subsonic, transonic, and supersonic flow equations. Method of characteristics. Numerical grid-generation techniques. Prerequisite: MAE 571 or instructor approval.

MAE 563 Unsteady Aerodynamics. (3) spring
Unsteady incompressible and compressible flow. Wings and bodies in oscillatory and transient motions. Kernel function approach and panel methods. Aerelastic applications. Prerequisite: MAE 460 or 461.

MAE 564 Advanced Aerodynamics. (3) fall

MAE 566 Rotary-Wing Aerodynamics. (3) fall
Introduction to helicopter and propeller analysis techniques. Momentum, blade-element, and vortex methods. Hover and forward flight. Ground effect, autorotation, and compressibility effects. Prerequisite: MAE 361.

MAE 571 Fluid Mechanics. (3) fall
Basic kinematic, dynamic, and thermodynamic equations of the fluid continuum and their application to basic fluid models.

MAE 572 Inviscid Fluid Flow. (3) spring
Mechanics of fluids for flows in which the effects of viscosity may be ignored. Potential flow theory, waves, and inviscid compressible flows. Prerequisite: MAE 571.

MAE 573 Viscous Fluid Flow. (3) fall
Mechanics of fluids for flows in which the effects of viscosity are significant. Exact and approximate solutions of the Navier-Stokes system, laminar flow at low and high Reynolds number. Prerequisite: MAE 571.

MAE 575 Turbulent Shear Flows. (3) fall
Homogeneous, isotropic, and wall turbulence. Experimental results. Introduction to turbulent-flow calculations. Prerequisite: MAE 571.

MAE 577 Turbulent Flow Modeling. (3) spring
Reynolds equations and their closure. Modeling of simple and complex turbulent flows, calculations of internal and external flows, and application to engineering problems. Prerequisite: MAE 571.

MAE 581 Thermodynamics. (3) fall
Basic concepts and laws of classical equilibrium thermodynamics; applications to engineering systems. Introduction to statistical thermodynamics.

MAE 582 Statistical Thermodynamics. (3) once a year

MAE 585 Conduction Heat Transfer. (3) fall
Basic equations and concepts of conduction heat transfer. Mathematical formulation and solution (analytical and numerical) of steady and unsteady, one- and multidimensional heat conduction and phase change problems. Prerequisites: ECE 386; MAE 388.

MAE 586 Convection Heat Transfer. (3) spring
Basic concepts and governing equations. Analysis of laminar and turbulent heat transfer for internal and external flows. Natural and mixed convection. Prerequisite: MAE 388.

MAE 587 Radiation Heat Transfer. (3) fall
Advanced concepts and solution methodologies for radiation heat transfer, including exchange of thermal radiation between surfaces, radiation in absorbing, emitting, and scattering media and radiation combined with conduction and convection. Prerequisite: MAE 388.

MAE 588 Two-Phase Flows and Boiling Heat Transfer. (3) spring
Pool and flow boiling heat transfer, condensation heat transfer, various models of vapor-liquid mixture flows, gas-solid mixture flows, and experimental measurement techniques.

MAE 589 Heat Transfer. (3) fall
Basic concepts; physical and mathematical models for heat transfer. Applications to conductive, convective, radiative, and combined mode heat transfer. Prerequisite: MAE 388.

MAE 594 Graduate Research Conference. (1) fall and spring
Topics in contemporary research. Required every semester of all departmental graduate students registered for 9 or more semester hours. Not for degree credit.

MAE 598 Special Topics. (1–4) fall and spring
Special topics courses, including the following, which are regularly offered, are open to qualified students. Possible topics:
(a) Advanced Spacecraft Control. (1–3)
(b) Aeroelasticity. (1–3)
(c) Aerospace Vehicle Guidance and Control. (1–3)
(d) Boundary Layer Stability. (1–3)
(e) Hydrodynamic Stability. (1–3)
(f) Plasticity. (1–3)
(g) Polymers and Composites. (1–3)
Programs in Engineering Special Studies

Daniel F. Jankowski
Director
(ECG 104) 480/965-1726

The major of Engineering Special Studies accommodates students whose educational objectives require more intensity of concentration on a particular subject or more curricular flexibility within an engineering discipline than the traditional departmental majors generally permit. The major is a School of Engineering program. Unlike the departmental majors, however, there is not a separate faculty. The faculty teaching and advising in these programs are from the various departments within the School of Engineering.

For many students, engineering studies form the basis of preparation for professional engineering work where proficiency in the application of science and the physical and social technologies is brought to bear on problems of a large scope. The necessary breadth that these students seek often is not obtainable in traditional engineering fields. Rather, specially designed programs of course work that merge the required principles and approaches drawn from all fields of engineering and other pertinent disciplines are desired.

The B.S.E. degree in Engineering Special Studies is designed primarily for students intending to pursue engineering careers at a professional level in industry or graduate studies.

ENGINEERING SPECIAL STUDIES—B.S.E.

Premedical Engineering. In recent decades, the interrelation between engineering and medicine has become vigorous and exciting. Rapidly expanding technology dictates that engineering will continue to become increasingly involved in all branches of medicine. As this develops, so will the need for physicians trained in the engineering sciences—medical men and women with a knowledge of computer technology, transport phenomena, biomechanics, bioelectric phenomena, operations research, and cybernetics. This concentration is of special interest to students who desire entry into a medical college and who have medical interests in research, aerospace and underwater medicine, artificial organs, prostheses, biomedical engineering, or biophysics. Since both engineering and medicine have as their goal the well-being of humans, this program is compatible with any field of medical endeavor.

DEGREE REQUIREMENTS

A minimum of 128 semester hours is necessary for the B.S.E. degree in Engineering Special Studies with a concentration in Premedical Engineering. A minimum of 50 upper-division hours is required. Students must attain a GPA of at least 2.00 for the courses in the major field.

GRADUATION REQUIREMENTS

In addition to fulfilling school and major requirements, majors must satisfy all university graduation requirements. See “University Graduation Requirements,” page 74.

Note: To fulfill medical school admission requirements, BIO 182 General Biology is required in addition to the degree requirements and is best taken in summer session before the Medical College Admission Test.

COURSE REQUIREMENTS

The course work for the undergraduate degree can be classified into the following categories (in semester hours):

First-Year Composition
Choose among the course combinations below6
ENG 101 First-Year Composition (3)
ENG 102 First-Year Composition (3)

ENG 105 Advanced First-Year Composition (3)
Elective chosen with an advisor (3)

ENG 107 English for Foreign Students (3)
ENG 108 English for Foreign Students (3)

Total ..6

General Studies/School Requirements

Humanities and Fine Arts/Social and Behavioral Sciences
ECN 111 Macroeconomic Principles SB1 ...3
or ECN 112 Microeconomic Principles SB1 (3)
HU/SB and awareness area courses2 ...12

Total ..15

Literacy and Critical Inquiry
BME 413 Biomedical Instrumentation L3
BME 423 Biomedical Instrumentation Laboratory L1
ECE 300 Intermediate Engineering Design L3

Total ..7

Natural Sciences
PHY 121 University Physics I: Mechanics SQ33
PHY 122 University Physics Laboratory I SQ31
PHY 131 University Physics II: Electricity and Magnetism SQ33
PHY 132 University Physics Laboratory II SQ31

Total ..8

Mathematical Studies
ECE 100 Introduction to Engineering Design CS4
MAT 242 Elementary Linear Algebra ...2
MAT 270 Calculus with Analytic Geometry I MA4
MAT 271 Calculus with Analytic Geometry II MA4
MAT 272 Calculus with Analytic Geometry III MA4
MAT 274 Elementary Differential Equations MA3

Total ..21

General Studies/school requirements total51

Engineering Core
ECE 201 Electrical Networks I ...4
ECE 210 Engineering Mechanics I: Statics3
ECE 334 Electronic Devices and Instrumentation4
ECE 340 Thermodynamics ..3
ECE 350 Structure and Properties of Materials3

Total ..17

NOTE: For the General Studies requirement, courses, and codes (such as L, SQ, C, and H), see “General Studies,” page 78. For graduation requirements, see “University Graduation Requirements,” page 74. For an explanation of additional omnibus courses offered but not listed in this catalog, see “Classification of Courses,” page 51.
Engineering Special Studies Program Major—
Premedical Engineering Concentration

BIO 181 General Biology \square 4
BME 201 Introduction to Bioengineering L 3
BME 318 Biomaterials ..3
BME 331 Biomedical Engineering Transport I: Fluids ..3
BME 334 Bioengineering Heat and Mass Transfer3
BME 416 Biomechanics ..3
BME 417 Biomedical Engineering Capstone Design I3
BME 435 Physiology for Engineers 4
BME 470 Microcomputer Applications in Biotechnology ..4
BME 490 Biomedical Engineering Capstone Design II ...3
CHM 113 General Chemistry SQ 4
CHM 116 General Chemistry SQ 4
CHM 331 General Organic Chemistry 3
CHM 332 General Organic Chemistry 3
CHM 335 General Organic Chemistry Laboratory1
CHM 336 General Organic Chemistry Laboratory1
ECE 380 Probability and Statistics for Engineering Problem Solving CS3
Technical elective ...2
Total ...54

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.

Typical Four-Year Sequence

First Year

First Semester
CHM 113 General Chemistry SQ 4
ECE 100 Introduction to Engineering Design CS4
ENG 101 First-Year Composition 3
MAT 270 Calculus with Analytic Geometry I MA4
Total ...15

Second Semester
CHM 116 General Chemistry SQ 4
ENG 102 First-Year Composition 3
MAT 271 Calculus with Analytic Geometry II MA4
PHY 121 University Physics I: Mechanics SQ^13
PHY 122 University Physics Laboratory I SQ^11
Total ...15

Second Year

First Semester
BIO 181 General Biology SQ ..4
BME 201 Introduction to Bioengineering L3
ECE 210 Engineering Mechanics I: Statics3
MAT 272 Calculus with Analytic Geometry III MA4
PHY 131 University Physics II: Electricity and Magnetism SQ^2 3
PHY 132 University Physics Laboratory II SQ^21
Total ...18

Second Semester
CHM 331 General Organic Chemistry 3
CHM 335 General Organic Chemistry Laboratory1
ECE 201 Electrical Networks I 4
ECE 350 Structure and Properties of Materials3
ECN 111 Macroeconomic Principles SB3
or ECN 112 Microeconomic Principles SB (3)
MAT 274 Elementary Differential Equations MA3
Total ...17

Third Year

First Semester
BME 331 Biomedical Engineering Transport I: Fluids3
BME 435 Physiology for Engineers 4
CHM 332 General Organic Chemistry 3
ECE 300 Intermediate Engineering Design L3
ECE 340 Thermodynamics ...3
Total ...16

Second Semester
BME 318 Biomaterials ..3
BME 334 Bioengineering Heat and Mass Transfer3
CHM 336 General Organic Chemistry Laboratory1
ECE 334 Electronic Devices and Instrumentation4
MAT 242 Elementary Linear Algebra MA2
HU/SB and awareness area courses 33
Total ...16

Fourth Year

First Semester
BME 413 Biomedical Instrumentation L3
BME 416 Biomechanics ..3
BME 417 Biomedical Engineering Capstone Design I3
BME 423 Biomedical Instrumentation Laboratory L ...1
HU/SB and awareness area courses 33
Total ...16

Second Semester
BME 470 Microcomputer Applications in Biotechnology ..4
BME 490 Biomedical Engineering Capstone Design II3
ECE 380 Probability and Statistics for Engineering Problem Solving CS3
Total ...15

Total degree requirements ...128

1 Both PHY 121 and 122 must be taken to secure SQ credit.
2 Both PHY 131 and 132 must be taken to secure SQ credit.
3 Engineering students may not use aerospace studies (AES) or military science (MIS) courses to satisfy HU or SB requirements.