Graduate Programs and Courses

All graduate degree programs and certificate programs are organized alphabetically by the name of the major or certificate with only a few exceptions. For example, French, German, and Spanish are found under “Languages and Literatures,” page 245.

Accountancy

Certificate Program

ASU West offers a postbaccalaureate certificate in Accountancy. For information, see the ASU West Catalog, call 602/543-4567, or access www.west.asu.edu on the Web.

Accountancy and Information Systems

Master’s Program

www.cob.asu.edu/acct

480/965-3631

BA 223

Philip M.J. Reckers, Director

Professors: J.R. Boatman, Boyd, Christian, Goul, Johnson, Kaplan, Pany, Pei, Philippakis, Reckers, Roy, Schultz, Smith, St. Louis, Steinbart, Vinze, Wyndels

Associate Professors: Bhattacharya, David, Golen, Gupta, Hwang, Iyer, Keim, Kulkarni, Moeckel, O’Dell, O’Leary, Regier, Whitecotton, Yen

Assistant Professors: Chen, Chenoweth, Comprix, Dowling, Lee, O’Donnell, Petersen, Ravindran, Robinson, Roussinov, Rowe, Santanam, Shao, Weiss

Senior Lecturers: Goldman, Maccracken, Shrednick

Lecturers: J.L. Boatman, Geiger, Hayes

The faculty in the School of Accountancy and Information Management, College of Business, offer specialized professional programs leading to the Master of Accountancy and Information Systems (M.A.I.S.), Master of Science in Information Management (see “Information Management,” page 240), and Master of Taxation (see “Taxation,” page 328) degrees.

The faculty participate in offering the program leading to the Master of Business Administration (see “Master of Business Administration,” page 131) and Ph.D. in Business Administration (see “Doctor of Philosophy,” page 133).

MASTER OF ACCOUNTANCY AND INFORMATION SYSTEMS

The M.A.I.S. degree provides specialized preparation for careers in professional accounting and computer information systems/management, corporate accounting/finance, and management consulting.

Admission. Applicants must submit scores from the Graduate Management Admissions Test (GMAT) exam. All applicants are also required to submit the supplemental application materials required from the school. International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) and Test of Spoken English (TSE) exams. Preference in admission is given to those with degrees in accounting and business, although other exceptional candidates are considered. Complete application instructions may be obtained from the school’s Web site.

Prerequisites. Applicants must complete the program prerequisites. Refer to the School of Accountancy and Information Management Web site for a current listing of required course prerequisites for the program.

Program of Study. The program of study consists of a minimum of 30 semester hours and is continually updated. A representative program might include the following courses:

ACC 511 Taxes and Business Strategy ..3
ACC 533 Application Solutions in the Connected Economy3
ACC 541 Strategic Innovations in Information and Cost Management...3
ACC 585 Performance Measurement of Emerging Business Models...3
ACC 586 Shareholder Value Creation and Financial Statement Analysis..3
ACC 587 Business Process Integrity Controls..3
ACC 591 Seminar: Electronic Commerce..3
CIS 505 Object-Oriented Modeling and Programming3
CIS 506 Business Database Systems ...3
CIS 512 Intelligent Decision Systems and Knowledge Management ...3

Visit the school’s Web site for a current program of study.

Course Load. Students are limited to 12 hours per trimester.

Foreign Language Requirements. None.

Thesis Requirements. None.
ACCOUNTANCY AND INFORMATION SYSTEMS

Final Examinations. A final comprehensive, written examination is required of all candidates.

RESEARCH ACTIVITY

For current information about research activity, access the School of Accountancy and Information Systems Web site at www.cob.asu.edu/acct.

ACCOUNTANCY (ACC)

ACC 502 Financial Accounting. (3) once a year
Financial accounting concepts and procedures for external reporting. Prerequisite: M.B.A. degree program student.

ACC 503 Managerial Accounting. (3) once a year
Managerial accounting concepts and procedures for internal reporting. Prerequisite: M.B.A. degree program student.

ACC 511 Taxes and Business Strategy. (3) once a year
Economic implications of selected management decisions involving application of federal income tax laws. Recognition of tax hazards and tax savings. Prerequisite: ACC 502 (or its equivalent).

ACC 515 Professional Practice Seminar. (3) selected semesters
History, structure, environment, regulation, and emerging issues of the accounting profession.

ACC 521 Tax Research. (3) once a year
Tax research source materials and techniques. Application to business and investment decisions. Prerequisite: ACC 430.

ACC 533 Application Solutions in the Connected Economy. (3) once a year
Analyzes software solutions and evaluation methods. Emphasizes current topics such as enterprise modeling, ERP software, and inter-organizational solutions. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

ACC 541 Strategic Innovations in Information and Cost Management. (3) once a year
Strategic cost management emphasizing contemporary topics, including activity-based costing and strategic uses of information technology systems. Cooperative learning, lecture. Prerequisite: ACC 503 or M.S. in Information Management degree program student or M.A.I.S. degree program student.

ACC 567 Financial Models in Accounting Systems. (3) selected semesters
Development and application of financial models by accountants. Analysis of decision support systems as financial modeling environments. Prerequisite: ACC 330.

ACC 571 Taxation of Corporations and Shareholders. (3) once a year
Tax aspects of the formation, operation, reorganization, and liquidation of corporations and the impact on shareholders. Pre- or corequisite: ACC 521.

ACC 573 Taxation of Pass-Through Entities. (3) once a year
Tax aspects of the definition, formation, operation, liquidation, and termination of a partnership. Emphasizes tax planning. Pre- or corequisite: ACC 521.

ACC 575 Family Tax Planning and Wealth Transfer Taxation. (3) once a year
Tax treatment of wealth transfers at death and during lifetime, with emphasis on tax planning. Pre- or corequisite: ACC 521.

ACC 577 Taxation of Real Estate Transactions. (3) selected semesters
Income tax aspects of acquisition, operation, and disposal of real estate; syndications; installment sales; exchanges; dealer-investor issues; alternative financing and planning. Prerequisite: ACC 521 or instructor approval.

ACC 582 Information Security of Interorganizational Systems. (3) selected semesters
Function and responsibility of the information security officer. Advanced topics in security methods and technology. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

ACC 585 Performance Measurement of Emerging Business Models. (3) once a year
Applies quantitative techniques to accounting problems. Prerequisite: ACC 503 or M.S. in Information Management degree program student or M.A.I.S. degree program student.

ACC 586 Shareholder Value Creation and Financial Statement Analysis. (3) once a year
Develops skills necessary to exploit financial reporting information in a business environment and appreciation of reporting issues faced by management.

ACC 587 Business Process Integrity Controls. (3) once a year
Design and evaluation of computer-based accounting information systems. Development of computer-based business models for planning and control. Prerequisite: M.A.I.S. degree program student.

ACC 591 Seminar on Selected ACC Topics. (1–12) once a year
Topics may include the following:
• Computer Security. (3)
• Data Warehouse and Data Mining. (3)
• Electronic Commerce. (3)
• Enterprise Modeling. (3)

OMNIBUS COURSES. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

COMPUTER INFORMATION SYSTEMS (CIS)

CIS 502 Management Information and Decision Support Systems. (3) once a year
Fundamentals of computer-based management information and decision support systems. Prerequisite: M.B.A. degree program student.

CIS 505 Object-Oriented Modeling and Programming. (3) once a year
Object-oriented modeling of business information systems, abstract data types and object-oriented programming using a visual language. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 506 Business Database Systems. (3) once a year
Hierarchical, network, relational, and other recent data models for database systems. Processing issues such as concurrency control, query optimization, and distributed processing. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 512 Intelligent Decision Systems and Knowledge Management. (3) once a year
Definition, description, construction, and evaluation of computer-based decision systems. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 515 Management Information Systems. (3) selected semesters
Systems theory concepts applied to the collection, retention, and dissemination of information for management decision making. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 520 Systems Design and Evaluation. (3) selected semesters
Methodologies of systems analysis and design. Issues include project management, interface, organizational requirements, constraints, documentation, implementation, control, and performance evaluation. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.
GRADUATE PROGRAMS AND COURSES

CIS 530 Information Systems Development. (3) once a year
Object-oriented and interprocess communication and control concepts for information systems; applications based on languages such as C++ and platforms such as networked UNIX. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 535 Distributed Information Systems. (3) once a year
Distributed systems and their impact on information systems in business. Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 591 Seminar on Selected CIS Topics. (1–12) once a year
Topics may include the following:
• Computer Security
• Computing Architectures
• Data Warehouse and Data Mining
• Electronic Commerce
• Enterprise Modeling
Prerequisite: M.S. in Information Management degree program student or M.A.I.S. degree program student.

CIS 593 Applied Project. (1–12) once a year

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Aerospace Engineering
Master’s and Doctoral Programs

www.eas.asu.edu/~mae
480/965-3291
ECG 346

Robert E. Peck, Chair

Professors: Chattopadhyay, Laananen, Liu, Mignolet, Peck, Reed, Saric, Wie

Associate Professors: Lee, Rankin, Wells

Assistant Professor: Mikellides

The faculty in the Department of Mechanical and Aerospace Engineering offer graduate programs leading to the M.S., Master of Science in Engineering, and Ph.D. degrees in Aerospace Engineering. A number of areas of study may be pursued, including aerodynamics, design, dynamics and control, propulsion, and structures. The faculty also offer graduate degree programs in Mechanical Engineering. All of the department’s graduate programs stress a sound foundation leading to a specialized area of study.

The application deadline for admission in the fall semester is April 15. Applications received after that date and before November 15 are considered for admission in the spring semester.

Graduate Record Examination. All applicants are required to take the Graduate Record Examination; the subject test in Engineering is highly recommended but not required.

MASTER OF SCIENCE

See “Master’s Degrees,” page 93, for general requirements.

MASTER OF SCIENCE IN ENGINEERING

See “Master of Science in Engineering,” page 196, for information on the Master of Science in Engineering degree.

DOCTOR OF PHILOSOPHY

The Ph.D. degree is conferred upon evidence of excellence in research leading to a scholarly dissertation that is an original contribution to knowledge in the field of aerospace engineering. See “Doctor of Philosophy,” page 96, for general requirements.

Program of Study. The program of study must be established no later than the first semester after successfully completing the qualifying examination.

Qualifying Examinations. The purposes of the qualifying criteria are to assess if the student is prepared to continue in the doctoral program and to detect deficiencies in the student’s background that can be corrected by appropriate course work and individual study. Within the first year of graduate studies at ASU, a graduate student pursuing a Ph.D. program of study in Aerospace Engineering must complete three 500-level core courses, preferably in the major area of interest, and one 500-level mathematics course, both with an average GPA of 3.25 or higher.

Foreign Language Requirements. None.

Comprehensive Examinations. Written and oral comprehensive examinations are required. The examinations are administered by the program committee.

Dissertation Requirements. A dissertation based on original work demonstrating creativity in research and scholarly proficiency in the subject area is required.

Final Examinations. A final oral examination in defense of the dissertation is required.

Computer Resources and Facilities

See “Computer Resources and Facilities,” page 265.

COURSES

For courses, see “Mechanical and Aerospace Engineering (MAE),” page 265.
Agribusiness
Master’s Program

www.east.asu.edu/msabr
480/727-1585
CNTR 20

Raymond A. Marquardt, Dean
Professors: Daneke, Edwards, Kagan, Marquardt, Seperich, Shultz, Thor
Associate Professors: Patterson, Raccach, Richards
Assistant Professors: Manfredo, Schmitz, Stanton

MASTER OF SCIENCE

The Morrison School of Agribusiness and Resource Management (MSABR), at ASU East, offers the M.S. degree in Agribusiness with a choice of two concentrations: (1) agribusiness management and marketing and (2) food quality assurance. In general, this degree is designed to prepare students from a variety of backgrounds with a set of critical and analytical business skills while recognizing the unique demands of the agribusiness and resource management sectors. Graduates are well prepared for successful administrative or managerial careers with either government or private-sector organizations in either field. Students are able to select either a research-oriented program, which leads to the completion of a supervised thesis, or a program consisting of course work only (nonthesis option). The nonthesis option allows students to develop an area of specialization and apply these skills to a real-world agribusiness problem through an integrative, capstone course experience. Both the thesis and nonthesis options require the completion of a common set of core courses and successful completion of an MSABR standard comprehensive exam following the first year of course work.

Admission. Applicants to the program are expected to meet the minimum requirements for admission to the Graduate College. In addition, scores from the Graduate Record Examination, Miller Analogies Test, or Graduate Management Admission Test are required. Applications must include a vita and statement of purpose; letters of recommendation are suggested. The statement of purpose must offer evidence of the applicant’s basic skills in economics, accounting, statistics, and computer use, as well as some experience or knowledge in an area related to agribusiness. Applicants not meeting this last requirement may be considered for admission with deficiencies. The application deadline for admission in the fall semester is April 15. Applications received after that date and before November 15 are considered for admission in the spring semester. Applicants are strongly encouraged to apply by mid-February to increase their chances for official university funding.

Thesis Option. Students interested in pursuing a research-related career, or in a pursuit of depth study of a particular agribusiness issue to improve employment prospects, may choose the thesis option. These students are advised to begin discussions with faculty members early in their studies so that course work and potential employment can be geared toward supporting thesis research. Six of the 36 semester hours in the program are dedicated to the research time required to complete a thesis.

Nonthesis Option. The nonthesis M.S. degree in Agribusiness option provides an opportunity for students who wish to pursue a professional career that is not specifically research-oriented to obtain a rigorous and comprehensive graduate degree. The nonthesis option allows for the selection of six semester hours of electives to be taken in a specific area of emphasis. In lieu of a thesis, a nonthesis option student completes a case-oriented capstone course, which allows the student an opportunity to pursue a course-based project that integrates all of the core business skills acquired during the course work sequence.

Program of Study. All M.S. candidates must complete a minimum of 36 hours of approved graduate-level course work, excluding courses taken to address deficiencies. Of these 36 hours, 21 must be taken to satisfy core requirements in basic business, statistics, and computer proficiency. For students selecting the nonthesis option, fulfilling the requirements for an area of emphasis consists of the successful completion of six hours of elective courses from within that area chosen from graduate agribusiness courses. The specific courses are determined by the student and his or her academic advisor. Thesis students are required to complete three semester hours of research and three hours of writing in addition to six hours of general 500-level agribusiness electives.

It is suggested that students take a coherent sequence of courses such as those indicated below, but considerable flexibility is possible based on individual backgrounds and interests.

Thesis and Nonthesis M.S. in Agribusiness

Semester I
AGB 560 Advanced Agribusiness Management Systems.......3
AGB 570 Managerial Economics for Agribusiness3
Total ...6

Semester II
AGB 528 Advanced Agribusiness Marketing3
AGB 532 Advanced Agribusiness Finance3
AGB 561 Agribusiness Research Methods3
Total ..9

Semester III
Nonthesis Option
500-level AGB emphasis electives.................................9
Total ..9

Thesis Option
AGB 511 Advanced Agribusiness Management3
GRADUATE PROGRAMS AND COURSES

500-level AGB electives ... 6
Total .. 9

Semester IV

Nonthesis Option
AGB 511 Advanced Agribusiness Management 3
500-level AGB emphasis or other electives 6
Total .. 9

Thesis Option
AGB 592 Research .. 6
AGB 599 Thesis ... 3
Total .. 9
Total hours in program .. 36

Cooperative Degree Program. The Morrison School of Agribusiness and Resource Management and the American Graduate School of International Management (Thunderbird) have a cooperative agreement for students interested in both agribusiness and international management. Thunderbird is an internationally recognized private graduate school, located in the Phoenix metropolitan area, offering course work in international studies, modern languages, and world business. This agreement enables students of ASU to take up to nine semester hours of course work at Thunderbird. To participate, the ASU student must be enrolled full-time (nine semester hours) and may only take three semester hours per semester at Thunderbird. The goal of this agreement is to enhance the educational opportunities available to qualified students of both institutions while making optimal use of the resources and facilities of both institutions.

Foreign Language Requirements. None.

Peace Corps’ Master’s International Program. MSABR has an agreement with the United States Peace Corps that makes combining graduate studies with Peace Corps service even more appealing. Participants can receive up to six hours of credit for their independent field work while in Peace Corps service. Graduate course work precedes departure to foreign countries. Interested individuals make separate application to ASU and the Peace Corps, and prepare plans of study with their faculty committees regarding studies in the field.

RESEARCH ACTIVITY

The faculty of agribusiness are engaged in a number of research projects of global, national, regional, or state importance. Scholarship in service to community is the hallmark of a state-supported university and is evident in the Morrison School of Agribusiness and Resource Management.

A few examples of this scholarship are “The National Food and Agriculture Policy Project;” a project involved with “Retail Contracting and Growers’ Prices in Fresh Fruit;” investigations in “Emerging Markets of the Balkans and Black Sea Region;” as well as “Curriculum for a Bachelor of Science Degree in Food Management.”
ABG 442 Food and Industrial Microbiology. (4)
Spring
Food- and industrial-related microorganisms; deterioration and preservation of industrial commodities. Lecture, lab. Prerequisite: a course in microbiology with lecture and lab.

ABG 443 Food and Industrial Fermentations. (3)
Spring
Management, manipulation, and metabolic activities of industrial microbial cultures and their processes. Prerequisite: ABG 442 or instructor approval.

ABG 445 Food Retailing. (3)
Fall
Food retail management. Discusses trends, problems, and functions of food retail managers within various retail institutions. Lecture, case studies.

ABG 450 International Agricultural Development. (3)
Fall
Transition of developing countries from subsistence to modern agriculture. Emphasis placed on implications for U.S. agribusiness working abroad.

ABG 452 International Agricultural Policy. (3)
Fall
Use of international trade theory to analyze the effects of government policies, trade agreements, and exchange rates on agribusiness. Prerequisite: ECN 112.

ABG 454 International Trade. (3)
Spring
International practices in trading of agribusiness, technology, and resource products and services.

ABG 455 Resource Management. (3)
Spring
Explores differences between societal and individual valuations of natural resources and considers public policy versus market-based solutions to environmental concerns. Prerequisite: ECN 112.

ABG 457 Resource Policy and Sustainability. (3)
Fall
Considers the evolution of policy design, focusing on how resource and environmental concerns have affected agricultural development and trade policies. Prerequisite: ECN 112.

ABG 460 Agribusiness Management Systems. (4)
Spring
Development and use of decision support systems for agribusiness management and marketing. Lecture, lab.

ABG 463 Electronic Commerce Applications. (3)
Fall
Overview of electronic commerce technology with introduction to basics of design, control, operation, organization, and emerging issues. Pre- or corequisite: ABG 460 (or its equivalent).

ABG 466 Integrated Pest Control. (2)
Fall and Spring
Management of pests affecting golf turf and landscape plants. Nutritional Pest Control Board sprayer certification preparation offered during the semester. Lecture, lab.

ABG 470 Comparative Nutrition. (3)
Selected Semesters
Effects of nutrition on animal systems and metabolic functions. Prerequisite: CHM 231.

ABG 471 Diseases of Domestic Animals. (3)
Spring
Discusses animal welfare, mechanisms of disease development, causes and classification of diseases, disease resistance, and common zoonoses. Prerequisite: BIO 188.

ABG 473 Animal Physiology I. (3)
Selected Semesters
Control and function of the nervous, muscular, cardiovascular, respiratory, and renal systems of domestic animals. Prerequisites: BIO 188; CHM 113.

ABG 479 Veterinary Practices. (3)
Fall and Spring
Observation of and participation in veterinary medicine and surgery supervised by local veterinarians. Prerequisite: advanced preveterinary student.

ABG 480 Agribusiness Policy and Government Regulations. (3)
Spring
Development and implementation of government food, drug, pesticide, and farm policies and regulations that affect the management of agribusiness.

ABG 484 Internship. (1–12)
Fall and Spring
Prerequisite: selected semesters

ABG 501 Master’s Thesis Preparation. (1)
Fall and Spring
Step-by-step guidelines to major elements of a master’s thesis along with practical guidelines for conducting research.

ABG 511 Advanced Agribusiness Management. (3)
Spring
Analyzes organization behavior, change, and resource requirements within agribusiness systems.

ABG 512 Food Industry Management. (3)
Spring
Operations and management of food-processing factories, food distribution centers, and retail food-handling firms.

ABG 513 Advanced Cooperatives. (3)
Fall
Advanced study of cooperatives and other nongovernmental organizations (NGO) focusing on management and proposal preparation for international agencies.

ABG 514 Advanced Agribusiness Analysis I. (3)
Spring
Vertical integration and differentiation in food and agricultural industries. Prerequisite: ABG 528.

ABG 515 Agribusiness Coordination. (3)
Spring
Organizational alternatives for agribusiness with emphasis on cooperatives and trading companies. Prerequisite: ABG 528.

ABG 528 Advanced Agribusiness Marketing. (3)
Fall
Theory and analysis of marketing farm commodities, risks, and the effect of future trading on cash prices.

ABG 529 Advanced Agribusiness Marketing Channels. (3)
Spring
Analyzes agribusiness market channel systems. Formulation of marketing strategies.

ABG 532 Advanced Agribusiness Finance. (3)
Fall
Financial management of agribusiness firms; agribusiness financial analysis, investment analysis, agricultural risk management, and introduction to agricultural financial intermediaries. Prerequisites: both computer literacy and a course in finance or only instructor approval.

ABG 533 Commodity Analysis. (3)
Fall
Analysis of commodity markets.

ABG 536 Small Business Finance, Entrepreneurship, and E-commerce. (3)
Fall
Uses lectures, case studies, and business plans to highlight challenges of starting and running a small business. Lecture, seminar, case studies, computer labs.

ABG 540 Advanced Food Science. (3)
Selected Semesters
Chemical and physical nature of processed foods. Emphasizes food product development.

ABG 550 International Agricultural Development. (3)
Fall
Transition of developing countries from subsistence to modern agriculture. Emphasis placed on implications for U.S. agribusiness working abroad.

ABG 551 Agribusiness in Developing Countries. (3)
Spring
Factors influencing successful development of agribusiness enterprises in developing countries, including poverty, access to capital and technology, and trade opportunities.
GRADUATE PROGRAMS AND COURSES

AGB 552 International Agricultural Policy. (3) fall
Uses international trade theory to analyze the effects of government policies, trade agreements, and exchange rates on agribusiness.

AGB 554 Advanced International Trade. (3) fall
Advanced international practices in trading of agribusiness, technology, and resource products and services.

AGB 557 Resource Policy and Sustainability. (3) fall
Considers the evolution of policy design, focusing on how resource and environmental concerns have affected agricultural development and trade policies.

AGB 558 Advanced Bioremediation. (3) spring
Management and policy issues related to bioremediation of minetailing and animal waste and replacement of chemical control with biological methods. Lecture, case studies.

AGB 560 Advanced Agribusiness Management Systems. (3) selected semesters
Development and use of decision support systems for agribusiness management decision making.

AGB 561 Agribusiness Research Methods. (3) fall
Uses model building, hypothesis testing, and empirical analysis in solving agribusiness problems.

AGB 570 Managerial Economics for Agribusiness. (3) fall
Concepts in micro- and macroeconomics applied to agribusiness management environments: price formation, market structure, information economics, fiscal and monetary policy. Prerequisites: introductory micro- and macroeconomics.

AGB 580 Practicum. (1–12) selected semesters
AGB 581 Advanced Agribusiness Policy. (3) fall
Policy-making history, structure, and process.

AGB 583 Field Work. (1–12) selected semesters
AGB 584 Internship. (1–12) selected semesters
AGB 587 Resource Policy and Sustainability. (3) fall
Considers the evolution of policy design, focusing on how resource and environmental concerns have affected agricultural development and trade policies.

AGB 589 Agribusiness Capstone. (3) fall and spring
Strategic management of organizations focusing on developing value-creating strategies in dynamic environments. Pre- or corequisites: AGB 511, 529, 532, 580, 561, 570.

AGB 590 Reading and Conference. (1–12) selected semesters
AGB 591 Seminar. (1–12) selected semesters
AGB 592 Research. (1–12) selected semesters
AGB 593 Applied Project. (1–12) selected semesters
AGB 594 Conference and Workshop. (1–12) selected semesters
AGB 595 Continuing Registration. (1) selected semesters
AGB 598 Special Topics. (1–4) selected semesters
AGB 599 Thesis. (1–12) selected semesters
AGB 600 Research Methods. (1–12) selected semesters

AGB 690 Reading and Conference. (1–12) selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Anthropology
Master’s and Doctoral Programs
www.asu.edu/clas/anthropology
480/965-6213
ANTH 233
John K. Chance, Chair

Regents’ Professors: Clark, Turner

Associate Professors: Falconer, Hegmon, Kimbel, Rice, Welsh

Assistant Professors: Baker, Haenn, Jonsson, Reed, Steadman

Senior Lecturer: Winkelman

Associate Research Professors: Simon, Sugiyama

The faculty in the Department of Anthropology offer graduate programs leading to the M.A. and Ph.D. degrees in Anthropology.

Admission. In addition to the general requirements for admission to the Graduate College, the Department of Anthropology requires applicants to provide a statement of their interests and professional goals and three letters of recommendation. Applicants who received their B.A. during the past ten years must also submit scores on the Graduate Record Examination. Undergraduate course work in anthropology is not a prerequisite for admission to the M.A. program. Admission to the Ph.D. program normally presumes an M.A. in Anthropology; students may be admitted without such a background on the condition that they acquire a knowledge of general anthropology in a manner to be specified at the time of admission.

Program of Study. Special training programs designed to terminate with a master’s degree are possible at the discretion of the student and faculty advisors. For example, the concentrations in linguistics, museum studies, medical anthropology, and bioarchaeology are at the master’s level. The primary purpose and scope of the graduate program in anthropology, however, is intended to lead to the Ph.D. degree.

The doctoral program is divided into three phases. The first consists of 24 semester hours of course work and read-
adaptations, settlement patterns and locational analysis. Major theoretical course offerings are concerned with reconstructing the cultural, biological, and environmental conditions of past human lifeways and their roles in human adaptation. ASU’s program leads to either an M.A. or Ph.D. degree and emphasizes a dual theoretical and methodological foundation in the relevant aspects of archaeology and in skeletal biology and dental anthropology.

Concentrations are available at the master’s level in archaeology, bioarchaeology, linguistics, museum studies, physical anthropology, and social-cultural anthropology. See “Master’s Degrees,” page 93, for general requirements. A concurrent M.A. degree in Anthropology and M.S. degree in Justice Studies is also available. See “Concurrent M.A. Anthropology/M.S. Justice Studies,” page 242.

DOCTOR OF PHILOSOPHY

Concentrations are available at the doctoral level in archaeology, physical anthropology, bioarchaeology, and social-cultural anthropology.

For more information on the Ph.D. degree, see “Doctor of Philosophy,” page 96.

Concentrations

Anthropology faculty and the department’s curriculum are organized into five areas of concentration.

Archaeology. Graduate studies in archaeology provide training leading to M.A. and Ph.D. degrees; these emphasize a solid methodological and theoretical foundation coupled with a practical approach to field and laboratory applications. Major theoretical course offerings are concerned with the archaeology of complex societies, hunter-gatherer adaptations, settlement patterns and locational analysis, intrasite spatial analysis, cultural ecology, economic archaeology, ideation, and style. Analytical topics are covered in courses dealing with quantitative and formal methods, simulation, geoarchaeology, field methods and the analysis of ceramics, lithics, fauna, and pollen. The University’s location in an archaeologically rich area has resulted in an especially strong emphasis on U.S. Southwest research. Other geographic emphases are on Mesoamerica, the circum-Mediterranean Old World, sub-Saharan Africa, and other parts of North America.

Bioarchaeology. Bioarchaeology, a theoretical and applied interface of archaeology and physical anthropology, is concerned with reconstructing the cultural, biological, and environmental conditions of past human lifeways and their roles in human adaptation. ASU’s program leads to either an M.A. or Ph.D. degree and emphasizes a dual theoretical and methodological foundation in the relevant aspects of archaeology and in skeletal biology and dental anthropology. Course offerings include archaeological method and theory, comparative anatomy, death and dying in cultural perspective, demography, dental anthropology, disease and human evolution, economic archaeology, faunal analysis, fossil hominids, human origins, human osteology, mortuary analysis, prehistoric diet, quantitative analysis, and a variety of topical and areal courses in archaeology and physical anthropology.

Museum Studies. Museum studies encompasses theoretically oriented analyses of museums as cultural institutions (including the activities of staff members, visitors, represented peoples, and all implicated others) as well as applied aspects of working in museums and related agencies. Drawing on all subdisciplines of anthropology, special emphasis is placed on connecting material culture and ideation in a variety of institutional and field settings. Museum studies students apply museum philosophy, principles, practices, and current critiques to explore the many dimensions of curatorship, including research, collections management, exhibition work, educational programming, and administration. The department offers an M.A. degree in Anthropology with a concentration in museum studies and a non-degree certificate in museum studies at the graduate (postbaccalaureate) level.

Physical Anthropology. The graduate program in physical anthropology provides training leading to the M.A. and Ph.D. degrees. M.A. students are introduced to current data, methods, and theories in six core areas of physical anthropology: anthropological genetics, dental anthropology, fossil hominids, health and disease, osteology, and primatology. The Ph.D. program focuses on the student’s area of interest, which may fall within one of seven areas of concentration in which faculty are actively involved and collaborating, or may bridge and extend these areas. Areas of concentration for which special course lists and groups of faculty have been organized include anthropological genetics, dental anthropology, health and disease, peopling of the Pacific basin and adjoining areas, primate ecology and social behavior, primate functional morphology, paleoanthropology, and skeletal biology.

Social-Cultural Anthropology. The sociocultural program provides education leading to the M.A. and Ph.D. degrees in...
GRADUATE PROGRAMS AND COURSES

most topics of sociocultural anthropology. Strong resources for studies in ecology, demography, religion, social organization, and political economy are available. An emphasis in method and theory crosses all of these topics. Special areas of strength include the U.S. Southwest, Mesoamerica, and Southeast Asia. Sociocultural faculty also share interests with faculty in physical anthropology and archaeology, especially in the study of disease, sociobiology, and native societies of the New World. M.A. and Ph.D. concentrations in anthropological linguistics are also available.

RESEARCH ACTIVITY

For current information about research activity, access the Department of Anthropology Web site at www.asu.edu/clas/anthropology.

ANTHROPOLOGY (SOCIAL AND BEHAVIORAL) (ASB)

ASB 400 Cultural Factors in International Business. (3) fall
Anthropological perspectives on international business relations; applied principles of cross-cultural communication and management; regional approaches to culture and business.

ASB 411 Kinship and Social Organization. (3) selected semesters
Meanings and uses of concepts referring to kinship, consanguinity, affinity, descent, alliance, and residence in the context of a survey of the varieties of social groups, marriage, rules, and kinship terminological systems. Prerequisite: 6 hours in anthropology or instructor approval.

ASB 412 History of Anthropology. (3) fall
Historical treatment of the development of the culture concept and its expression in the chief theoretical trends in anthropology between 1860 and 1950. Prerequisite: ASB 102 or instructor approval.

ASB 416 Economic Anthropology. (3) fall
Economic behavior and the economy in preindustrial societies; description and classification of exchange systems; relations between production, exchange systems, and other societal subsystems. Prerequisite: ASB 102 or instructor approval.

ASB 417 Political Anthropology. (3) selected semesters
Comparative examination of the forms and processes of political organization and activity in primitive, peasant, and complex societies. Prerequisite: ASB 102 or instructor approval.

ASB 420 Medical Anthropology: Culture and Health. (3) fall
Role of culture in health, illness, and curing; health status, provider relations, and indigenous healing practices in United States ethnic groups. Lecture, discussion.

ASB 426 Peoples and Cultures of Africa. (3) fall and spring
Survey of African peoples and their cultures, external contact, and changes. Meets non-Western requirement. Lecture, discussion. Cross-listed as AFS 466. Credit is allowed for only AFS 466 or ASB 466.

ASB 471 Introduction to Museums. (3) fall
History, philosophy, and current status of museums. Explores collecting, preservation, exhibition, education, and research activities in different types of museums. Prerequisites: both ASB 102 and ASM 104 or only instructor approval.

ASB 480 Introduction to Linguistics. (3) fall
Descriptive and historical linguistics. Survey of theories of human language, emphasizing synchronic linguistics.

ASB 481 Language and Culture. (3) spring
Applies linguistic theories and findings to nonlinguistic aspects of culture; language change; psycholinguistics. Prerequisite: ASB 102 or instructor approval.

ASB 483 Sociolinguistics and the Ethnography of Communication. (3) selected semesters
Relationships between linguistic and social categories; functional analysis of language use, maintenance, and diversity; interaction between verbal and nonverbal communication. Prerequisites: both ASB 480 and ENG 213 (or FLA 400) or only instructor approval.

ASB 485 U.S.-Mexico Border in Comparative Perspective. (3) spring in odd years
Explores the multicultural and social dimensions of communities along the U.S.-Mexico border, emphasizing social organization, migration, culture, and frontier ideology. Prerequisite: 6 hours in anthropology or instructor approval.

ASB 501 Applied Medical Anthropology. (3) fall
Overview of anthropology’s applications in medicine and its adaptations to U.S. ethnic populations. Requires research project in medical setting. Lecture, seminar. Prerequisite: graduate standing or instructor approval.

ASB 502 Health of Ethnic Minorities. (3) spring
Prevalence of illness, risk factors, health ecology, and medical and indigenous treatments. Lecture, seminar. Prerequisite: graduate standing or instructor approval.

ASB 503 Advanced Medical Anthropology. (3) fall
Theory in medical anthropology and cross-cultural studies that illustrate particular theories. Lecture, seminar. Prerequisite: graduate standing or instructor approval.

ASB 504 Ethnic Relations. (3) fall
Structural processes of intergroup relations, methods for investigating psychocultural dimensions of ethnicity with focus upon U.S. ethnic groups. Lecture, seminar. Prerequisite: graduate standing or instructor approval.

ASB 506 Gender, Emotions, and Culture. (3) spring
Relationships among gender and emotion across cultures. Lecture, seminar. Prerequisite: graduate standing or instructor approval.

ASB 529 Culture and Political Economy. (3) selected semesters
Origin and spread of Western capitalism and its impact on non-Western societies. Utilizes ethnographic and historical case studies. Prerequisite: graduate standing.

ASB 530 Ecological Anthropology. (3) once a year
Relations among the population dynamics, social organization, culture, and environment of human populations, with special emphasis on hunter-gatherers and extensive agriculturalists.

ASB 532 Graduate Field Anthropology. (2–8) spring
Independent research on a specific anthropological problem to be selected by the student in consultation with the staff. May be repeated for credit. Prerequisites: ASM 338 (or its equivalent); instructor approval.

ASB 536 Ethnohistory of Mesoamerica. (3) selected semesters
Indigenous societies of southern Mexico and Guatemala at Spanish contact and their postconquest transformation. Emphasizes the Aztec Empire. Prerequisite: graduate standing.

ASB 537 Topics in Mesoamerican Archaeology. (3) selected semesters
Explores changing organization of pre-Columbian civilizations in Mesoamerica through interpretive issues, such as regional analysis, chiefdoms, urbanism, and exchange. Prerequisite: instructor approval.
ASB 540 Method and Theory of Sociocultural Anthropology and Archaeology. (3) fall
Basic issues concerning concepts of social and ethnic groups, cultural and sociological theory, and the nature of anthropological research. Prerequisite: instructor approval.

ASB 541 Method and Theory of Social and Cultural Anthropology. (3) spring
Continuation of ASB 540. Prerequisite: ASB 540 or instructor approval.

ASB 542 Method and Theory of Archaeology I. (3) spring
Models of human evolution, culture change, and interpretation of hunter-gatherer and tribal societies, ceramic, lithic, and faunal materials. Prerequisite: instructor approval.

ASB 543 Method and Theory of Archaeology II. (3) fall
Covers concepts of social complexity along with economy, demography, and social dynamics, followed by archaeological research design. Prerequisite: instructor approval.

ASB 544 Settlement Patterns. (3) selected semesters
Spatial arrangement of residences, activity sites, and communities over landscape. Emphasizes natural and cultural factors influencing settlement patterns. Prerequisite: instructor approval.

ASB 546 Pleistocene Prehistory. (3) fall
Development of society and culture in the Old World during the Pleistocene epoch, emphasizing technological change through time and the relationship of people to their environment. Prerequisite: ASB 361 (or its equivalent).

ASB 547 Issues in Old World Domestication Economies. (3) spring
Archaeological evidence for transitions in Old World subsistence economies from hunting and gathering to dependence on domesticated plants and animals. Prerequisite: ASB 362 (or its equivalent).

ASB 550 Economic Archaeology. (3) selected semesters
Covers subsistence strategies, craft production and specialization, and exchange. Prerequisite: instructor approval.

ASB 551 Prehistoric Diet. (3) selected semesters
Critical review of techniques for recovering dietary information and theoretical models concerned with explaining diet and nutrition. Prerequisite: instructor approval.

ASB 555 Complex Societies. (3) spring
Examines structural variations in hierarchically organized societies, along with origins, dynamics, and collapse. Seminar.

ASB 559 Archaeology and the Ideational Realm. (3) selected semesters
"Postprocessual" and other views concerning relevance of mental phenomena for understanding sociocultural change. Various approaches to inferring prehistoric meanings.

ASB 563 Hunter-Gatherer Adaptations. (3) selected semesters
Evolution of prehistoric hunter-gatherer societies in the Old and New Worlds from the most ancient times through protohistoric chieftdoms. Prerequisite: instructor approval.

ASB 567 Southwestern Archaeology. (3) spring
Broad coverage of Southwestern cultural developments focusing on current debates and rigorous use of archaeological data in making cultural inferences.

ASB 568 Intrasite Research Strategies. (3) fall
Research issues within a single site context. Topics include quantitative spatial analysis, site definition, sampling, distributional analysis, and substantive interpretation.

ASB 571 Museum Principles. (3) fall
History, philosophy, and current status of museums. Explores collecting, preservation, exhibition, education, and research activities in different types of museums. Prerequisites: both ASB 102 and ASM 104 or only instructor approval.

ASB 572 Museum Collection Management. (3) spring
Principles and practices of acquisition, documentation, care, and use of museum collections; registration, cataloging, and preservation methods; legal and ethical issues. Prerequisite: ASB 571 or instructor approval.

ASB 573 Museum Administration. (3) spring
Formal organization and management of museums, governance, personnel matters, fund raising and grantsmanship, legal and ethical issues. Prerequisite: ASB 571 or instructor approval.

ASB 574 Exhibition Planning and Design. (3) spring
Exhibition philosophies and development; processes of planning, designing, staging, installing, evaluating, and disassembling temporary and long-term exhibits. Prerequisites: both ASB 571 and 572 or only instructor approval.

ASB 575 Computers and Museums. (3) fall
Basics of museum computer application; hardware and software fundamentals of database management; issues of research, collections management, and administration.

ASB 576 Museum Interpretation. (3) fall
Processes of planning, implementing, documenting, and evaluating educational programs in museums for varied audiences—children, adults, and special interest groups. Lecture, discussion. Prerequisite: ASB 571.

ASB 577 Principles of Conservation. (3) spring
Preservation of museum objects: nature of materials, environmental controls, and causes of degradation; recognizing problems, damage, and solutions; proper care of objects. Prerequisites: both ASB 571 and 572 or only instructor approval.

ASB 579 Critical Issues in Museum Studies. (3) fall
Current debates of museum practice from an anthropological perspective. Addresses issues of collection, presentation, authenticity, and authority. Seminar. Prerequisite: ASB 571 or instructor approval.

ASB 591 Seminar. (1–12) selected semesters
Selected topics in archaeology, linguistics, and social-cultural anthropology. Topics may include the following:
- Archaeological Ceramics. (3)
- Archaeology of North America. (3)
- Cultural Anthropology. (3)
- Culture and Personality. (3)
- Evolution and Culture. (3)
- Historical Archaeology. (3)
- Interdepartmental Seminar. (3)
- Language and Culture. (3)
- Linguistics. (3)
- Museum Studies. (3)
- Problems in Southwestern Archaeology. (3)
- Problems in Southwestern Ethnology. (3)
- Social Anthropology. (3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

ANTHROPOLOGY

ASM 435 Archaeological Pollen Analysis. (3) selected semesters
Theory, methodology, and practice of pollen analytic techniques. Compares uses in botany, geology, and archaeology. 2 hours lecture, 3 hours lab, possible field trips. Prerequisite: instructor approval.
ASM 448 Geoarchaeology. (3) fall and spring
Geologic context relevant to archaeological research. Topics include sediments, deposition environments, soils, anthropogenic and biogenic deposits, and quaternary chronology. Lecture, discussion, field experiences. Prerequisites: ASB 222 (or 223) or GLG 101 (or 103) or GPH 111; instructor approval.

ASM 450 Bioarchaeology. (3) spring
Surveys archaeological and physical anthropological methods and theories for evaluating skeletal and burial remains to reconstruct biocultural adaptation and lifeways. Prerequisite: ASM 104 or instructor approval.

ASM 452 Dental Anthropology. (4) fall
Human and primate dental morphology, growth, evolution, and genetics. Within- and between-group variation. Dental pathology and behavioral-cultural-dietary factors. 3 hours lecture, 3 hours lab. Prerequisite: instructor approval.

ASM 454 Comparative Primate Anatomy. (4) spring
Functional anatomy of the cranial, dental, and locomotor apparatus of primates, including humans, emphasizing the relation of morphology to behavior and environment. 3 hours lecture, 3 hours lab, dissections, demonstrations. Prerequisite: instructor approval.

ASM 455 Primate Behavior Laboratory. (3) selected semesters
Instruction and practice in methods of observation and analysis of primate behavior. Discussion of the relationship between class work on captive animals and field techniques for studying free-ranging groups. Directed readings, 6 hours lab. Prerequisites: ASM 343; instructor approval.

ASM 456 Infectious Disease and Human Evolution. (3) once a year
Study of infectious disease and humanity, using evidence from anthropology, history, medicine, and ancient skeletons. Prerequisite: ASM 345.

ASM 465 Quantification and Analysis for Anthropologists. (3) spring
Statistical, quantitative, and geometric strategies for envisioning and exploring archaeological, physical anthropological, bioarchaeological, and sociocultural data. Univariate and multivariate methods. Prerequisites: introductory statistical course; instructor approval.

ASM 472 Archaeological Ceramics. (3) selected semesters
Analysis and identification of pottery wares, types, and varieties. Systems for ceramic classification and cultural interpretation. 2 hours lecture, 3 hours lab. Prerequisite: instructor approval.

ASM 484 Geochronology. (3) fall
Geologic context relevant to archaeological research. Topics include sediments, deposition environments, soils, anthropogenic and biogenic deposits, and quaternary chronology. Prerequisite: instructor approval.

ASM 548 Geoarchaeology. (3) spring
Analysis and identification of pottery wares, types, and varieties. Systems for ceramic classification and cultural interpretation. 2 hours lecture, 3 hours lab. Prerequisite: instructor approval.

ASM 555 Advanced Human Osteology. (3) selected semesters
Laboratory and field techniques in dealing with the human skeleton. Emphasizes preparation, identification, radiography, sectioning, microscopy, and data processing. 1 hour lecture, 6 hours lab. Prerequisite: ASM 341 or instructor approval.

ASM 564 Quantitative Archaeology. (3) spring
Statistical, quantitative, and geometric strategies for envisioning and exploring archaeological, physical anthropological, bioarchaeological, and sociocultural data. Univariate and multivariate methods. Prerequisites: introductory statistical course; instructor approval.

ASM 565 Advanced Topics in Quantitative Archaeology. (3) fall
Archaeological issues associated with quantitative analysis, e.g., Bayesian and Monte Carlo approaches, simulation, diversity. May be repeated for credit. Prerequisite: ASM 565 or instructor approval.

ASM 573 Lithic Analysis. (3) selected semesters
Analysis and interpretation of chipped stone artifacts. Focuses on both techniques and underlying concepts and their application to real collections. Prerequisite: instructor approval.

ASM 591 Seminar. (1–12) selected semesters
Selected topics in archaeology and physical anthropology. Topics may include the following:
- Bioarchaeology. (3)
- Evolution and Culture. (3)
- Interdepartmental Seminar. (3)
- Physical Anthropology. (3)
- Primates and Behavior. (3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Architecture

Master’s Program

www.asu.edu/caed/architecture

480/965-3536

AED 162

Ron McCoy, Director

Regents’ Professor: Cook

Professors: Hoffman, McCoy, Meunier, Ozel, Rotondi, Underhill, Underwood

Associate Professors: Bryan, Ellin, Hartman, Krolloff, Kupper, Loope, Spellman, Van Duzer, Zygas

Assistant Professors: Caicco, Hejduk, Innes, Kobayashi, Lerum, Murff, Petrucci

The faculty in the School of Architecture offer a professional program leading to the Master of Architecture degree and a research-based postprofessional graduate program leading to the M.S. degree in Building Design. See “Master of Science in Building Design,” page 111, for information on this degree program.

The faculty in the school also participate in offering a Ph.D. in Environmental Design and Planning. See “Environmental Design and Planning,” page 202, for information on this degree program.

MASTER OF ARCHITECTURE

The Master of Architecture is the accredited professional degree program at ASU. There are two typical programs of study available: (1) a two-year program for applicants who have completed the four-year Bachelor of Science in Design (with a major in Architectural Studies) at ASU or an equivalent degree from another school that offers an accredited professional degree in architecture, and (2) a three-plus-year program for applicants with an undergraduate degree in a discipline or field other than architecture. Both programs
promote broad areas of knowledge, professional skill, and a social awareness that the architect must command if architecture is to enhance contemporary life and remain an enduring and valid expression of society.

The program represents an attempt to develop the knowledge and skills necessary for graduates to achieve future leadership roles in the professional practice of architecture and related environmental design fields.

It is the intention of the faculty that the programs also

1. ensure a basic level of educational experience sufficient to enter the practice of architecture after successfully completing state licensing requirements and examination,

2. encourage the student to develop proficiencies in specific areas compatible with individual interests and university instructional capabilities,

3. provide a breadth of understanding that will encourage and motivate the student to continue learning throughout a professional career, and

4. develop opportunities that combine instruction and research directed toward adding value to the built environment.

Elective foci currently offered in the program include energy-conscious design, computer applications, urban design, architectural history and theory, and architectural administration and management.

In the first year of the two-year program, graduate design studio projects focus on advanced comprehensive problems that require integration of the full range of knowledge and skills from students’ undergraduate education. In the second year, students select design studios and undertake final design projects that complement their areas of interest. Courses in technology, history and theory, and architectural management are structured alongside the studio sequence.

The three-plus-year program begins with an intensive 10-week summer session introducing architecture and design fundamentals and continues with a preparatory year of architectural history, technology, and design. The final two years are similar to the two-year program described above. Students without work experience in architecture must also complete a summer internship between the first and second years.

Application Requirements. An applicant to the M.Arch. program must hold a baccalaureate or graduate degree from a college or university recognized by ASU and must meet the minimum GPA requirements as established by the Graduate College.

In addition, all applicants are required to submit for review a design portfolio, GRE scores, a statement of intent, and letters of reference. Applicants are accepted on a space-available basis only. Students may be admitted to the two-year program with deficiencies if their previous course work is not equivalent to the ASU undergraduate requirements and standards.

Students intending to apply for admission to the professional program in architecture at the graduate level should apply to the program well in advance of the application deadline.

International applicants whose native language is not English must submit the official GRE scores as well as the TOEFL (with a minimum score of 610, or 253 for the computer-based exam). International students should apply to the program at least one year before the date they plan to begin study.

Application Procedures. Applicants must submit separate application materials to the Graduate College and the School of Architecture.

School of Architecture. In addition to the Graduate College admission requirements, applicants must file all of the following admission materials with

MASTER OF ARCHITECTURE ADMISSIONS COMMITTEE
SCHOOL OF ARCHITECTURE
ARIZONA STATE UNIVERSITY
PO BOX 871605
TEMPE AZ 85287-1605

1. Statement of Intent. A personal narrative (maximum 600 words or two pages typed) indicating the applicant’s interest, previous academic and practical background, and personal and professional educational objectives must be submitted.

2. Letters of Recommendation. A minimum of three letters of recommendation in support of the applicant must be mailed directly to the Graduate Admissions Committee, School of Architecture. The references should be from professionals or educators familiar with the applicant’s experience and capability for graduate work.

3. Portfolio. Candidates applying for the two-year Master of Architecture program are required to submit a portfolio. The portfolio must be no larger than 8.5" x 11" (image size). The admissions committee is interested in the quality of work submitted in the portfolio, and applicants are advised not to lavish expense on special or unusual packaging. Slides, original drawings, and loose (unbound) materials should not be submitted. The portfolio should include at least five projects with a range of complexity and with concise, explanatory statements for each project. Include the dates of execution; course, professor, or firm; objective or program summary; and most importantly, a brief self-analysis of the results. When any work is not completely original, the relevant sources must be given. When work is of a team nature, the applicant’s role and contribution to the project should be clearly indicated. Applicants who have professional experience and wish to submit examples of professional work may do so. Of particular interest are projects in which the applicant has played a principal role in design. The portfolio is returned after final admission procedures, provided the applicant encloses a self-addressed return mailer with sufficient prepaid postage or if the applicant appears in person to claim the materials within one year of submission. Unclaimed portfolios are retained for one year only. The School of
GRADUATE PROGRAMS AND COURSES

Architecture assumes no liability for materials lost or damaged during shipment or handling.

4. Creative Work. Candidates applying for the three-plus-year Master of Architecture program must also provide a portfolio of work as described in paragraph three above. It is recognized that candidates to this program may not have work related to architecture. Therefore, the portfolio should include other forms of creative work such as drawings, designs, paintings, photography, writing, craft, and construction. The work presented may be from vocational, avocational, or academic sources.

Because of space limitations, not all qualified applicants can be accommodated and the admission process is necessarily selective.

Students should indicate for which program of study they are applying. Those with a four-year degree equivalent to the B.S.D. in Architectural Studies should apply for the two-year program. Those with an undergraduate degree that is not part of an accredited program in architecture should apply for the three-plus-year program. Students who are uncertain about which program suits them should contact the senior academic advisor for determination of appropriate application. Applicants are required to write their names in a clear and consistent manner on all materials submitted, preferably in the “family name, first name” format (e.g. Smith, John).

Students with a previous professional degree in architecture (five or six years) who wish to pursue advanced study in climate responsive architecture, building energy performance, computer-aided design, energy simulation and analysis, and facilities development and management should apply to the Master of Science in Building Design program. See “Master of Science in Building Design,” page 111.

Application Deadline. Priority consideration is given to completed applications received on or before January 15. Students are not admitted to the two-year Master of Architecture program at any time other than the beginning of the fall semester. Students are not admitted to the three-plus-year Master of Architecture program at any time other than the beginning of the first summer session.

Personal Interview. A personal interview is not required. However, a candidate wishing to visit the school is welcome and should make arrangements by contacting the graduate coordinator in the School of Architecture.

Requirements for the Two-Year Program. The two-year graduate program requires a minimum of 56 semester hours of approved courses and electives and a comprehensive examination. For most students, this program involves an average of 14 semester hours per semester. An internship may be offered as an elective to be taken in the summer before the final year of study. The internship is an honors program individually arranged and approved by the Master of Architecture Committee.

Students who can adequately demonstrate competence through experience or previous academic course work for any of the specific requirements outlined below are encouraged to petition the graduate coordinator for a course substitution.

Typical Program of Study
First Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>ADE 521</td>
<td>Advanced Architectural Studio I</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>APH 505</td>
<td>Foundation Theory Seminar</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATE 553</td>
<td>Building Systems III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATE 563</td>
<td>Building Structures III</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>ADE 522</td>
<td>Advanced Architectural Studio II</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>APH 515</td>
<td>Current Issues and Topics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ATE 556</td>
<td>Building Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Professional elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fall</td>
<td>AAD 551</td>
<td>Architectural Management I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ADE 621</td>
<td>Advanced Architectural Studio III</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ANP 681</td>
<td>Project Development</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Professional elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td>Spring</td>
<td>AAD 552</td>
<td>Architectural Management II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>ADE 622</td>
<td>Advanced Architectural Studio IV</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Approved elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Professional elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Master of Architecture total</td>
<td></td>
<td>56</td>
</tr>
</tbody>
</table>

* At least one professional elective must be a CAD course or be taken in the area of computers, if the student can demonstrate CAD skills.

Requirements for the Three-Plus-Year Program. The three-plus-year graduate program requires a minimum of 99 semester hours of approved courses and electives and a comprehensive examination. For most students, this program involves 12 semester hours in the first summer and 14–15 semester hours in each of the subsequent six semesters. A summer internship is required after the first full year of study. A second internship may be offered as an elective to be taken in the summer before the final year of study. The second internship is an honors program individually arranged and approved by the Master of Architecture Committee.

Students who can adequately demonstrate competence through experience or previous academic course work for any of the specific requirements outlined below are encouraged to petition the graduate coordinator for a course substitution.

Typical Program of Study
First Year

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer</td>
<td>ADE 510</td>
<td>Foundation Architectural Studio</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>APH 200</td>
<td>Introduction to Architecture</td>
<td>3</td>
</tr>
</tbody>
</table>

110
Comprehensive Examinations

The faculty require that all students pass an oral comprehensive examination based, in part, on a defense of their final design project in ADE 622. Each student is required to undertake an independent design project in ADE 622, based on an approved proposal completed the previous semester in ANP 681. Examiners typically include members of the Architecture faculty and may include distinguished practitioners not on the faculty.

M.Arch./M.B.A. Concurrent Degree Program

A Master of Architecture/Master of Business Administration concurrent degree program is offered through cooperative arrangement between the faculty of the College of Business and the College of Architecture and Environmental Design. Students may obtain both degrees in approximately three years of study by concurrently meeting the requirements for each degree program. Separate applications are required by the respective units.

This program requires a minimum of 88 semester hours for those in the two-year M.Arch. program. Once admitted, in consultation with their respective advisors, students develop programs of study that meet degree requirements of both programs and their particular interests. Students interested in this offering should request further information from the School of Architecture graduate advisor.

Master of Science in Building Design

The faculty in the School of Architecture offer a graduate program leading to the M.S. degree in Building Design. Concentrations are available in design knowledge and computing, energy performance and climate-responsive architecture, and facilities development and management. The program provides advanced study at the postprofessional level for architects, and at the specialist level for nonarchitects who have a degree in a related area such as engineering, business, computer science, and the physical and environmental sciences. The purpose of the program is the development of knowledge useful to the arts and sciences of building design and the integration of that knowledge in the design process. Within this context, the program emphasizes (1) the ecological importance of energy-conscious design and construction, as well as the high social value placed on buildings in which natural forces and systems are utilized rather than suppressed, and (2) the development of research, information systems, and management processes suited to the planning and design of complex buildings in urban settings.

It is preferred that applicants have at least one year of professional employment or comparable field/research experience in building design in addition to their academic experiences. Applicants are accepted on a space-availability basis, and must specify an area of research concentration upon application. International applicants whose native language is not English must submit the official GRE scores as well as the TOEFL (with a minimum score of 610 or above, or 253 for the computer-based exam). International students should apply to the program at least one year prior to the date they plan to begin study.

The faculty in the school also participate in offering the Ph.D. in Environmental Design and Planning. See “Environmental Design and Planning,” page 202, for information on the Ph.D. degree program.

Application Procedures. Applicants must submit separate application materials to the Graduate College and the School of Architecture.

Application Deadline. Priority consideration is given to completed applications received on or before February 15. Applications for admission received after February 15 are
GRADUATE PROGRAMS AND COURSES

considered only for remaining vacancies and “alternate” placement.

School of Architecture. In addition to the Graduate College admission requirements, applicants must file all of the following admission materials with

MASTER OF SCIENCE IN BUILDING DESIGN
ADMISSIONS COMMITTEE
SCHOOL OF ARCHITECTURE
ARIZONA STATE UNIVERSITY
PO BOX 871605
TEMPE AZ 85287-1605

Statement of Intent. A personal narrative (maximum 600 words or two pages typed) indicating the applicant’s interest, previous academic and practical background, and personal and professional educational objectives must be submitted.

Letters of Recommendation. A minimum of three letters of recommendation in support of the applicant must be mailed directly to the Master of Science in Building Design Graduate Admissions Committee, School of Architecture. The references should be from professionals or educators familiar with the applicant’s experience and capability for graduate work.

Portfolio. Applicants must submit a portfolio documenting projects, papers, creative endeavors, and, if appropriate, work experience (maximum size 9” x 12”).

The portfolio is returned after final admission procedures, provided the applicant encloses a self-addressed return mailer with sufficient prepaid postage, or if the applicant appears in person to claim the materials within one year of submission. Unclaimed portfolios are retained for only one year. The School of Architecture assumes no liability for lost or damaged materials. Applicants are required to write their names in a clear and consistent manner on all materials submitted, preferably in the “family name, first name” format (e.g., Smith, John).

Research/Teaching Statement. Students wishing to be considered for teaching or research assistantships must submit the application for graduate assistant form with their application materials. International students who wish to be considered for a teaching assistantship and whose native language is not English are required to pass the Test of Spoken English administered by the American English and Culture Program at ASU.

Program of Study. The program requires a minimum of 30 semester hours of approved course work at the advanced level, including six hours of thesis credit.

The M.S. degree in Building Design is based on concepts of research and decision making emphasized by the College of Architecture and Environmental Design.

Students admitted to the program are required to take a research methods core, certain courses in their area of concentration, additional elective course work as approved and directed by the supervisory committee, and write and defend a thesis. While the minimum requirement is 30 semester hours, most students require at least four semesters of course work and work on their thesis to successfully complete this degree program.

The concentrations include the following: design knowledge and computing, energy performance and climate-responsive architecture, and facilities development and management.

The design knowledge and computing concentration addresses computer-aided design methods and techniques and their application to problem-solving issues in the built environment. The goal of the program is to provide a fundamental understanding of computational issues and methods in architectural design and to explore critically the application and potential of these techniques in practice. Topics studied include computer graphics and geometric modeling, simulation and analysis, Web development and programming, knowledge-based and object-oriented systems, databases, and comprehensive computer-aided design and information management systems.

Energy Performance and Climate-Responsive Architecture Concentration

Research/thesis ... 6
Area of concentration requirements 24
Minimum total .. 30

In climate-responsive architecture, a student applies the principles of “bioclimatic” building design in a studio setting to maximize the use of renewable energy resources in particular locations and building programs. In analysis of building energy performance, a student applies physical and economic analysis, computer simulation, and/or measurement as tools in determining component or whole-building performance relative to energy, climate, and cost-efficiency.

The energy and climate concentration educates students to become experts in energy-efficient design and technology. The program is concerned with the relationships between climate and site, thermal and visual comfort, and energy demand and consumption.

Energy Performance and Climate-Responsive Architecture Concentration

Research/thesis ... 6
Area of concentration requirements 24
Minimum total .. 30

The facilities development and management concentration is concerned with decision-making processes in building (real estate) development and firm management. The goal of the program is the advancement of knowledge in managerial theory, knowledge structures, risk/benefit analysis, marketplace dynamics, and their relationship to building development, and firm management. This concentration addresses the following topics: spatial decision models, building development models and processes, financing and the economic return of facilities, market structure, market strategy, pricing, costs, design automation, group decision making, team building, architectural programming, post-occupancy evaluation, value-based design, and financial management models. The program benefits from ties to various professional groups concerned with real estate development and facilities management, as well as interdisciplinary ties to the School of Business and the Del E. Webb School of Construction.
The facilities development and management core course requirements (six semester hours) consist of courses taken in the architectural administration and management sequence of the program with the AAD prefix.

Facilities Development and Management Concentration

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research/thesis</td>
<td>12</td>
</tr>
<tr>
<td>Area of concentration requirements</td>
<td></td>
</tr>
<tr>
<td>Approved electives</td>
<td></td>
</tr>
<tr>
<td>Minimum total</td>
<td>30</td>
</tr>
</tbody>
</table>

Foreign Language Requirements. None.

Thesis Requirements. A thesis is required. Each candidate devotes research effort of six semester hours of thesis/research credit in preparation of a thesis. The thesis must conform to school policies and meet Graduate College format requirements.

Final Examinations. A final oral examination in defense of the thesis is required.

RESEARCH ACTIVITY

- Renata Hejduk is an architectural historian/theorist who works on the Continental and American post-World War II avant-garde in architecture and urbanism. Her focus is on the 1960s and 70s. Her upcoming book is coedited with Jim Williamson and is entitled *The Structure of Faith: The Continuity of Religious Imagination in Modern and Contemporary Architecture*.
- Professor Dan Hoffman’s research takes the form of design projects focusing on the tectonic implications of sustainable building strategies. Current projects include the development of a housing prototype for the Navajo using small diameter logs and a camp for children and adults of special needs in the Arizona forests.
- David Scheatzle’s recent research activity includes a demonstration of residential comfort control using radiant cool ceiling panels. His research paper was published in the transactions of the American Society of Heating, Refrigerating and Air Conditioning Engineers, February, 2000: “Monitoring and evaluating a year round radiant/convective system.”
- Leslie Van Duzer (in collaboration with Kent Kleinman) is completing a building monograph entitled “Notes on Almost Nothing: Mies van der Rohe’s Haus Lange and Haus Esters.”
- Paul Zygas’ current research interest is focused on the Baroque architecture in the Grand Duchy of Lithuania from 1600 to 1750.

ARCHITECTURE COURSES

Courses offered by the faculty of the School of Architecture are categorized in the instructional areas described below.

Architectural Administration and Management (AAD).

AAD courses investigate the organization and managerial aspects of contemporary architectural practice. These studies examine the overall processes relative to management coordination, administration procedures, ethics, legal constraints, and the financial controls and measures of contemporary architectural practice.

Architectural Design and Technology Studios (ADE). ADE encourages synthesis of the knowledge and understanding the student has gained from previous and parallel course work, and from other sources, toward the comprehensive design of architectural projects. The laboratories integrate the needs, limitations, and determinants of design problems while applying analytical methods and technical skills in seeking and comparing alternative solutions for assigned problems.

Environmental Analysis and Programming (ANP). ANP develops capabilities to analyze and program environmental and human factors as preconditions for architectural design. These studies are concerned with the existing and emerging methods used by the profession to evaluate and analyze. A variety of courses on computer utilization is included in this area.

Architectural Philosophy and History (APH). APH develops an understanding of architecture as both a determinant and a consequence of humankind’s culture, technology, needs, and behavior in the past and present. These studies are concerned with the rationale for the methods and results of design and construction.

Architecture Professional Studies (ARP). ARP provides students with residency and off-campus opportunities and educational experience in group and individual studies relative to specific student interests and faculty expertise.

The program also offers several opportunities to study abroad. In addition, various required and optional field trips are undertaken in course work. (Supplemental fees are assessed for these offerings.)

Architectural Technology (ATE). ATE develops knowledge of the technical determinants, resources, and processes of architecture. These studies are concerned primarily with the science and technology of design and construction, including materials, structural systems, construction systems, environmental control systems, active and passive solar systems, and acoustics and lighting.

ARCHITECTURAL ADMINISTRATION AND MANAGEMENT (AAD)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 494</td>
<td>Special Topics (1–4)</td>
<td></td>
</tr>
<tr>
<td>AAD 551</td>
<td>Architectural Management I. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Management II. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 555</td>
<td>Architect as Developer. (3)</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Technology (ATE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP 681</td>
<td>Architectural Technology</td>
<td></td>
</tr>
<tr>
<td>ADE 621</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Design and Technology Studios (ADE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADE 621</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
<tr>
<td>ADE 622</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Philosophy and History (APH)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 551</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Administration and Management (AAD)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 494</td>
<td>Special Topics (1–4)</td>
<td></td>
</tr>
<tr>
<td>AAD 551</td>
<td>Architectural Management I. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Management II. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 555</td>
<td>Architect as Developer. (3)</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Technology (ATE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP 681</td>
<td>Architectural Technology</td>
<td></td>
</tr>
<tr>
<td>ADE 621</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
<tr>
<td>ADE 622</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Philosophy and History (APH)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 551</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Administration and Management (AAD)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 494</td>
<td>Special Topics (1–4)</td>
<td></td>
</tr>
<tr>
<td>AAD 551</td>
<td>Architectural Management I. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Management II. (3)</td>
<td></td>
</tr>
<tr>
<td>AAD 555</td>
<td>Architect as Developer. (3)</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Technology (ATE)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANP 681</td>
<td>Architectural Technology</td>
<td></td>
</tr>
<tr>
<td>ADE 621</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
<tr>
<td>ADE 622</td>
<td>Architectural Design and Technology Studios</td>
<td></td>
</tr>
</tbody>
</table>

Architectural Philosophy and History (APH)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credit Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAD 551</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
<tr>
<td>AAD 552</td>
<td>Architectural Administration and Management</td>
<td></td>
</tr>
</tbody>
</table>
GRADUATE PROGRAMS AND COURSES

AAD 599 Thesis. (1–12)
fall or spring
Fee.

AAD 681 Professional Seminar: Capstone. (3)
selected semesters
Examines ethical, political, social, economic, ecological, and cultural issues confronting the practice of architecture. Seminar, readings, case studies.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

ARCHITECTURAL DESIGN AND TECHNOLOGY STUDIOS (ADE)

ADE 510 Foundation Architectural Studio. (6)
summer

ADE 511 Core Architectural Studio I. (6)
fall
Applies design fundamentals in architectural problems, including construction, technology, programmatic and environmental determinants. Lecture, studio, field trips. Fee. Prerequisite with a grade of “C” or higher: ADE 510. Corequisite: ATE 353.

ADE 512 Core Architectural Studio II. (6)
spring
Applies architectural design fundamentals to increasingly complex problems, including specific sites and activities. Lecture, studio, field trips. Fee. Prerequisite with a grade of “C” or higher: ADE 511.

ADE 521 Advanced Architectural Studio I. (5)
fall

ADE 522 Advanced Architectural Studio II. (5)
spring
Design problems emphasizing the comprehensive integration of building systems and technologies as influences on architectural form. Lecture, studio, field trips. Fee. Prerequisite with a grade of “C” or higher: ADE 521. Corequisites: APH 515; ATE 556.

ADE 621 Advanced Architectural Studio III. (5)
fall
Design problems emphasizing the urban context, planning issues, and urban design theory as influences on architectural form. Lecture, studio, field trips. Fee. Prerequisite: admission to Master of Architecture degree program. Corequisites: AAD 551; ANP 681.

ADE 622 Advanced Architectural Studio IV. (5)
spring
Individual, student-initiated project reflecting a culminating synthesis of architectural ideas. Studio. Fee. Prerequisites with a grade of “C” or higher: ADE 621; ANP 681. Corequisite: AAD 552.

ADE 631 Building Systems Simulation Studio. (5)
fall
Design of energy-efficient medium and large commercial complexes; synthesis to optimize performance using new and advanced algorithms. Lecture, lab, studio. Prerequisite: admission to graduate program.

ADE 661 Bioclimatic Design Studio. (6)
once a year
Sustainable architectural and site synthesis at a variety of scales emphasizing bioclimatic criteria and the use of passive and low-energy systems. Prerequisite: admission to graduate program.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

ENVIRONMENTAL ANALYSIS AND PROGRAMMING (ANP)

ANP 494 Special Topics. (1–4)
fall, spring, summer

ANP 500 Research Methods. (1–12)
fall
Fee. Prerequisite: admission to graduate program. Corequisite: ANP 561.

ANP 530 Computer Graphics in Architecture. (3)
spring
Fundamentals of computer graphics programming in architecture, including graphics hardware, device-independent packages, 2- and 3-dimensional transformations, and data structures. 2 hours lecture, 3 hours lab. Prerequisite: instructor approval. Corequisite: ANP 563.

ANP 561 Architectural Information Processing Systems. (3)
fall
Applies information processing systems to architectural problems. Analyzes computing tools with respect to assumptions and theories. Lecture, lab. Prerequisite: admission to graduate program. Corequisite: ANP 500.

ANP 563 Methods in Architectural Design Computation. (3)
spring
Concepts and models for research in computer-aided architectural design with an emphasis on computational methods and a system framework. Discussion, lab. Prerequisite: ANP 500 or instructor approval. Corequisite: ANP 530.

ANP 590 RC: Computer Programming and Architecture. (1–12)
fall
ANP 598 Special Topics. (1–4)
fall or spring
ANP 599 Thesis. (1–12)
fall or spring
Fee.

ANP 681 Project Development. (3)
fall
Defines and elaborates on major ideas for implementation in ADE 622 in relation to contemporary theory and practice. Seminar. Prerequisite
with a grade of "C" or higher: ADE 522. Corequisites: ADE 551; ADE 621.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see "Omnibus Courses," page 48.

ARCHITECTURAL PHILOSOPHY AND HISTORY (APH)

APH 494 Special Topics. (1–4)
fall
APH 505 Foundation Theory Seminar. (3)
fall
Foundation of conceptual architectural inquiry, stressing the reciprocal and interdependent relationship between design and theory. Lecture, seminar. Corequisite: ADE 521.

APH 509 Foundation Seminar. (3)
summer
Historical, technical, theoretical, environmental, and professional issues in architecture. Lecture, seminar, field trips. Corequisite: ADE 510.

APH 511 Energy Environment Theory. (3)
fall
Solar and other energy sources in designed and natural environments; architectural, urban, and regional implications of strategies using other renewable resources.

APH 515 Current Issues and Topics. (3)
spring
Critical examination of current architectural issues, topics, and discourse. Prerequisite with a grade of "C" or higher: APH 505. Corequisites: ADE 522; ATE 556.

APH 581 Contemporary Urban Design. (3)
spring
Explores contemporary city and urban design issues related to contemporary cities. Seminar, lecture, discussion.

APH 598 Special Topics. (1–4)
fall or spring

APH 681 Architectural Theory. (3)
selected semesters
Examines architectural theory. Emphasizes application of theory to practice. Seminar. Prerequisite: instructor approval.

APH 683 Critical Regionalism. (3)
spring
Critical inquiry in cultural grounding; the definition of place in architectural theory and practice. Lecture, field studies.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see "Omnibus Courses," page 48.

ARCHITECTURE PROFESSIONAL STUDIES (ARP)

ARP 564 Clinical Internship. (1)
fall
Structured practical experience following a contract or plan, supervised by faculty and practitioners. Prerequisite: admission to graduate program.

ARP 684 Professional Internship. (2–6)
fall
Field experience in an architectural firm specializing in an area directly related to the student's advanced study. Integrates theory and state-of-the-art practices. Credit/no credit. Prerequisite: admission to graduate program.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see "Omnibus Courses," page 48.

ARCHITECTURAL TECHNOLOGY (ATE)

ATE 494 Special Topics. (1–4)
selected semesters

ATE 521 Building Environmental Science. (3)
fall
Scientific principles relating to comfort and environmental control. Heat and moisture transfer. Solar/natural energies for heating, cooling, and lighting. Lecture, lab. Prerequisite: admission to graduate program. Corequisite: ATE 582.

ATE 530 Daylighting Design. (3)
selected semesters
Daylight analysis, availability, design sky measurements, modeling and simulation. Integration with passive heating, cooling, building design, and energy considerations. Lecture, lab.

ATE 550 Passive Cooling and Heating. (3)
fall
Theory, analysis, and application of passive and low-energy systems in order to maximize comfort and minimize energy consumption in buildings. Lecture, lab. Prerequisite: instructor approval.

ATE 553 Building Systems III. (3)
fall
Design and integration of building systems, including mechanical, electrical, plumbing, security, communications, fire protection, and transportation. Prerequisite: admission to Master of Architecture program.

ATE 554 Building Energy Efficiency. (3)
selected semesters
Impact of building design on energy performance. Climate responsiveness, operations dynamics, and subsystems integration in thermal comfort and efficiency. Prerequisite: instructor approval.

ATE 556 Building Development. (3)
spring
Comprehensive design development through the understanding and integration of building materials and systems. Lecture, seminar. Prerequisite: admission to graduate program. Corequisites: ADE 522; APH 515.

ATE 557 Construction Documents. (3)
selected semesters
Production of architectural working drawings; legal status, organization, layout, site survey plans, sections, elevations, details, schedules, and coordination. Lecture, lab. Prerequisite: admission to upper division or graduate program.

ATE 560 Building Energy Analysis. (3)
spring

ATE 562 Experimental Evaluation. (3)
selected semesters

ATE 563 Building Structures III. (3)
fall
Analysis, design, and detailing of steel buildings and frames. Lateral analysis of small rigid and braced frame systems. Lecture, lab. Prerequisites: ATE 462 (or its equivalent); admission to graduate program.

ATE 564 Advanced Structures: Concrete. (3)
selected semesters
Analysis, design, and detailing of concrete systems, considering continuity, multistory frames and shear walls, and lateral analysis. Computer application. Prerequisite: ATE 563 or instructor approval.

ATE 565 Advanced Structures: High Rise. (3)
selected semesters
Developments in high-rise construction. Effects of wind and seismic forces. Preliminary analysis, design, and detailing considering code requirements. Lecture, lab. Prerequisite: ATE 563 or instructor approval.

ATE 582 Environmental Control Systems. (3)
spring
Heating, ventilation, and air-conditioning systems. Loads, psychrometrics, refrigeration cycle, air/water distribution, controls, energy performance standards, and utility rates. 2 hours lecture, 3 hours lab, field trips. Prerequisite: ATE 451 or 521.

ATE 599 Thesis. (1–12)
fall or spring
Fee.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see "Omnibus Courses," page 48.
GRADUATE PROGRAMS AND COURSES

ARCHITECTURAL COMMUNICATION (AVC)
AVC 494 Special Topics. (1–4)
once a year
AVC 598 Special Topics. (1–4)
fall or spring
Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Art
Master’s and Doctoral Programs
herbergercollege.asu.edu/art
480/965-3468
ART 102

Jon Sharer, Interim Director

Regents’ Professors: Klett, Weiser

Professors: Alquist, Bates, Britton, Cocke, Codell, Eckert, Erickson, Fahlin, Gasowski, Gillingwater, Hajicek, Kaida, Magenta, Marc, Maxwell, Meissinger, Otis, Plie, Pimentel, Risseveu, Schmidt, Sharer, Stokrocki, Sweeney, Verstegen, White, Young

Associate Professors: Collins, Duncan, Gully, Jenkins, Pessler, Piltisley, Schleif, Schoebel, Schutte, Segura, Serwint, Umberger, Wolfthal

Assistant Professors: Brown, McIver, Mesch, Newport

The faculty in the School of Art offer a program with a major in Art leading to the M.A. degree with concentrations in art education and art history.

Students admitted to the Master of Education degree program with a major in Secondary Education may also elect art as the subject matter field.

The Ph.D. degree in Curriculum and Instruction is offered with a concentration in art education through the College of Education. The Ph.D. degree in History and Theory of Art is offered in collaboration with the University of Arizona.

MASTER OF ARTS

Art Education

Admission. An applicant must have a bachelor’s degree from an accredited college or university with a major of not less than 45 semester hours of art, including 12 hours of art history and six hours of art education. Additional hours may be required by the school.

An applicant must have a GPA of at least 3.00 in undergraduate course work during the junior and senior years. Applicants who do not meet these requirements must submit scores from the Miller Analogies Test or the Graduate Record Examination. Applicants should submit a formal art education research paper for review.

Program of Study. The degree program requires a minimum of 30 semester hours of credit in art education, including 18 hours of core courses, six hours of special topics on research related to integrating the teaching of studio art, art history, and criticism or aesthetics, and six hours of research and thesis.

To meet the core requirements, students must take the following core courses:

ARE 510 Art Education Colloquium 3
ARE 520 Issues in Teaching Inquiry in Art 3
ARE 525 Research on Teaching Art History 3
ARE 530 Issues in Teaching Studio Art 3
ARE 535 Research on Teaching Studio Art 3
ARE 540 Teaching Art in Cultural Contexts 3

Before the end of the first semester of course work (six or more semester hours), a program of study must be submitted to the Graduate College. Additional program requirements are indicated in the M.A. in Art Education Guidelines.

Qualifying Research Paper. A qualifying research paper must be submitted at the end of the semester in which the student completes the first 15 hours of course work. This paper must be judged satisfactory by the art education faculty before the start of the following semester, or the student is put on probation. During the semester following the qualifying research paper review, the student on probation may not enroll in more than nine semester hours of course work (these may not be thesis hours). To continue in the program, the student must submit a satisfactory research paper before the end of that semester.

Thesis Requirements. A written thesis is required.

Final Examinations. A final oral examination in defense of the thesis is required.

Art History

Admission. An applicant must have a bachelor’s degree with an undergraduate major or minor in art history, or at least four upper-division art history courses, in which an average GPA of 3.00 was maintained. Graduate Record Examination (aptitude test) scores must be submitted in support of the application, along with three letters of recommendation. Applicants should submit one formal research paper for review and a one-page statement of intent indicating their objectives for graduate study. The application deadline is January 15.

Program of Study. The degree program requires 33 semester hours of credit including a minimum of 21 hours in art history, with at least 12 of these earned in 500-level seminars. At least one course must be taken in each of the four core areas: non-Western, ancient/medieval, renaissance/baroque, and modern. Satisfactory completion of ARS 501 Methodologies and Art History is required during the first semester of residence. The remaining hours include ARS 599 Thesis, approved electives, and other courses specified by the faculty.

For more information, a student should request a copy of the M.A. in Art History Guidelines from the School of Art.
FOREIGN LANGUAGE REQUIREMENTS. Demonstration of a reading knowledge of one foreign language (French, German, or with faculty approval, another language appropriate to the field of study) is required. Depending upon the student’s chosen area of study, reading knowledge of an additional language may be required.

Qualifying Research Paper. In order for the student to continue graduate study, a qualifying research paper, submitted in the semester in which 15 hours will be completed, must be judged satisfactory by the faculty.

Thesis Requirements. A written thesis is required.

Final Examinations. A final oral examination in defense of the thesis is required.

MASTER OF FINE ARTS

Art

The Master of Fine Arts degree in Art requires a minimum of 60 semester hours of graduate work beyond the bachelor’s degree. The objective of this degree is to provide advanced study in one or more of the following concentrations: ceramics, drawing, fibers, intermedia, metals, painting, photographic studies, photography, printmaking, sculpture, or wood.

Admission. A bachelor’s degree from a college or university recognized by ASU is required. All students applying for the M.F.A. degree must submit to the chair of the Graduate Studio Committee a portfolio of 20 slides of their work with a return envelope and postage. Three letters of recommendation and a statement of intent pertaining to the student’s educational objectives are also required. Because each area of specialization may have unique requirements, students are advised to contact the School of Art for additional information.

Selection Procedures. Faculty review committees appointed by the Graduate Studio Committee make the recommendations for admission. All aspects of the application are evaluated with the purpose of selecting for the available openings those students who have the most reasonable prospect for success in the proposed programs of study. The application deadline is January 15 for the following fall semester. Each student whose application is complete by the deadline date should be advised of admission status within six weeks of the deadline.

Review Sequence

All students are reviewed after completing 15 semester hours of graduate studio work. A progress review may be called at any time during the course of the graduate program. Following the review (after 15 semester hours), the student must form a supervisory committee to direct the program through the completion of the M.F.A. exhibition and final oral examination. For more information, a student should request a copy of the *M.F.A. Guidelines* from the School of Art.

Program of Study. A total of 60 semester hours of graduate credit subject to committee approval is required, including:

1. 27–32 graduate studio hours in the major area(s) of concentration;
2. nine hours of graduate-level art history;
3. nine hours of graduate work outside the area of concentration. These hours may be taken in art auxiliary, art education, art history, or outside the school or college. At least three hours are recommended in a studio discipline; and
4. 10–15 hours of ART 680 Practicum, resulting in an M.F.A. Exhibition.

Credit Before Admission. Subject to the recommendation of the review committee, students with a completed M.A. degree in Studio Art may have up to 24 hours (exclusive of thesis or project) applied to the M.F.A. program. In other cases, a maximum of 12 semester hours of transfer credit may be applied to the degree program. However, only nine hours of nondegree graduate credit taken before admission at ASU or another institution may be used to fill degree requirements (see “Credit Completed Before Admission,” page 93).

Foreign Language Requirements. None.

Final Examination. An oral defense of the M.F.A. exhibition (ART 680) is required.

Time Limit. The total program and all requirements for the degree, including transferred course work, must be completed within seven calendar years.

DOCTOR OF PHILOSOPHY—PH.D.

Faculty in the School of Art offer programs leading to doctoral degrees in art education and art history. Additional information about graduate programs and forms for graduate study are available online at www.asu.edu/graduate or from graduate admissions.

ART EDUCATION

Ph.D. in Curriculum and Instruction

A Ph.D. degree in Curriculum and Instruction with a concentration in art education is available through the College of Education. For more information, see “Curriculum and Instruction,” page 171.

Admissions. In addition to meeting the Graduate College admission requirements, each applicant must provide the following: a letter of intent including career goals and reasons for seeking the interdisciplinary Ph.D. in Curriculum and Instruction; GRE scores; a sample of scholarly written work; and three letters of recommendation. One year of full-time K–12 teaching experience is strongly recommended.

Program of Study. The degree requires 90 to 93 semester hours beyond the bachelor’s degree. Course work is divided into four core areas: core requirements, professional focus, cognate study, and dissertation/individual research. A foreign language is not required.

Program Committee. A chair and at least two other members oversee early advising and the preparation of the initial program of study. A five-member committee is required for
GRADUATE PROGRAMS AND COURSES

the administration and evaluation of the comprehensive examination. Three of these members must be from the interdisciplinary committee, two of whom must have expertise in the student’s area of concentration.

Dissertation Committee. After passing the comprehensive examination, a dissertation committee is formed with the approval of the dean of the Graduate College. Members of the program committee may continue to serve as members of the dissertation committee or the members of the committee may change. The dissertation committee chair must be a faculty member designated eligible to serve in this capacity by the interdisciplinary committee and the dean of the Graduate College.

HISTORY AND THEORY OF ART

Ph.D. in History and Theory of Art

The Arizona Ph.D. in the History and Theory of Art is a collaborative program between Arizona State University and the University of Arizona, directed by a Ph.D. steering and academic committee with members from both universities. The emphasis is on interdisciplinary methodologies and electronic technologies to prepare students for museum and teaching careers. See “Doctor of Philosophy,” page 96, for general requirements.

Admissions. Applicants must submit an application form, fee, GRE scores, official transcripts, and other materials to the Graduate College Admissions Office. The following materials must be sent to the graduate advisor, art history: a statement of intent regarding graduate study, a scholarly research paper, requests for assistantships and tuition waivers, and three academic letters of recommendation (to be sent directly by referees). The postmark deadline is January 15 for complete admission applications for enrollment in the following fall semester.

Students with a B.A. fulfilling the requirements for acceptance into the M.A. program may seek admission directly into the Ph.D. program. Other applicants may hold an M.A. in Art History or another discipline approved by the Ph.D. steering committee. Students lacking in sufficient background in art history are required to make up these credits before courses may be counted toward the Ph.D.

Program of Study. The Ph.D. requires 54 semester hours beyond the M.A., including six semester hours of Ph.D. core classes, 12 semester hours in the major area of emphasis, six semester hours in the minor area, six semester hours in interdisciplinary courses outside of art history, and a written dissertation (24 semester hours). Students need to complete the requirements for the M.A. in Art history before advancing to the Ph.D. program.

Foreign Language. A reading knowledge of at least two foreign languages is required. A third language may be necessary, depending on the field of study.

Ph.D. Committee. A three- to five-member comprehensive examination and dissertation committee directs the student’s subsequent work. The committee consists of two art history faculty members in the student’s major area and one in the minor area or related discipline. One member must be from the University of Arizona.

Comprehensive Examinations. A written examination is required upon completion of course work. The subsequent oral examination, within six months of passing the written examination, addresses the dissertation proposal.

Admission to Candidacy. A student advances to candidacy upon completion of the written and oral examinations.

ART AUXILIARY (ARA)

ARA 460 Gallery Exhibitions. (3)

Fall and spring
Practical experience in all phases of department gallery operations and preparation of gallery publications. May be repeated for credit. Prerequisite: instructor approval.

ARA 488 Understanding Art. (3)

Fall and spring
Understanding art as an emergent cultural phenomenon with an emphasis on a critical examination of conceptual issues in art. Requires writing. Prerequisites: both ARS 101 and 102 or only instructor approval.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

ART EDUCATION (ARE)

ARE 440 Disciplines of Art Education. (3)

Once a year
Explorations in art education’s disciplines, history, and people’s art-making development at diverse age levels and abilities. Lecture, discussion. Prerequisites: a combination of ARS 101 and 102 and ART 113 and 115 or only instructor approval.

ARE 450 Teaching Inquiry in Art. (3)

Fall and spring
Designing inquiry-based curriculum units built on developmental levels of art making and art understanding. Lecture, discussion. Prerequisites: ARS 101, 102.

ARE 470 Art Criticism: Aesthetics. (3)

Fall
Traditions of aesthetics and art criticism; conceptual issues in contemporary art; education in the visual arts. Prerequisite: ARE 440 or instructor approval.

ARE 482 Teaching Art Processes. (3)

Spring
Art traditions of the 20th century as a basis for studio and art history instruction. Meets art postbaccalaureate certification requirement. 2 hours lecture, 2 hours studio. Prerequisite: ARE 450.

ARE 486 Art Education: Strategies and Applications. (3)

Fall
Implementation and evaluation of art instruction for K–12 population. Includes teaching of Saturday classes in the Children’s Art Workshop. Meets art postbaccalaureate certification requirement. Prerequisite: ARE 482.

ARE 496 Methods and Assessment of Learning in Art. (3)

Once a year
Individual or group research on the assessment of art learning incorporating theory and practice. Meets art postbaccalaureate certification requirement. Prerequisites: both ARE 470 and 485 or only instructor approval.

ARE 510 Art Education Colloquium. (3)

Selected semesters
Historical foundations of art education and faculty presentations regarding teaching and research related to the visual arts.

ARE 520 Issues in Teaching Inquiry in Art. (3)

Once a year
Issues in teaching and learning through inquiry about artworks using print and electronic reproductions and information. Recommended to be taken before ARE 525.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARS 400</td>
<td>History of Printmaking. (3)</td>
<td>once a year</td>
<td>History of the print as an art form and its relation to other modes and forms of artistic expression. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 410</td>
<td>Early Christian and Byzantine Art. (3)</td>
<td>once a year</td>
<td>Art and architecture of the early church and the Byzantine Empire from the 4th to the 15th century. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 458</td>
<td>Critical Theories in the Visual Arts. (3)</td>
<td>selected semesters</td>
<td>Examines current critical theories through their application to all visual arts. May include new historicism, Marxism, deconstruction, post-structuralism, semiotics, Lacanian psychoanalysis, feminism, postmodernism. Lecture, discussion, student presentations. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 469</td>
<td>Mexican Art. (3)</td>
<td>once a year</td>
<td>Art of Mexico and related Central American cultures from the prehistoric to the contemporary schools. Meets non-Western art history requirement. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 473</td>
<td>Art of Japan. (3)</td>
<td>once a year</td>
<td>Japanese art from the Jomon period to the present. Meets non-Western art history requirement. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 485</td>
<td>Women in the Visual Arts. (3)</td>
<td>spring</td>
<td>Historical study of art by women in various media; related social, political, educational issues; representation of women in art. Lecture, discussion. Prerequisites: both ARS 101 and 102 or only instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 501</td>
<td>Methodologies and Art History. (3)</td>
<td>fall</td>
<td>History of the discipline and an exploration of various methodologies, critical theory, and bibliographies used by art historians. Seminar.</td>
<td></td>
</tr>
<tr>
<td>ARS 502</td>
<td>Critical Studies in Egyptian Art. (3)</td>
<td>selected semesters</td>
<td>Egyptian art from pre-Dynastic to New Kingdom periods. Focus on aesthetic, philosophical, and cultural contexts. Requires research paper and readings.</td>
<td></td>
</tr>
<tr>
<td>ARS 504</td>
<td>Critical Approaches to Greek Art. (3)</td>
<td>once a year</td>
<td>Art and architecture of Aegean civilizations (Cycladic, Minoan, Mycenaean) and of Greece to end of Hellenistic period. Requires research paper and readings.</td>
<td></td>
</tr>
<tr>
<td>ARS 506</td>
<td>Critical Studies in Roman Art. (3)</td>
<td>once a year</td>
<td>Art and architecture of Etruria, the Roman Republic, and the Roman Empire. Requires research paper and/or supplemental readings.</td>
<td></td>
</tr>
<tr>
<td>ARS 514</td>
<td>Critical Approaches to Romanesque Art. (3)</td>
<td>selected semesters</td>
<td>Sculpture, painting, architecture, and the minor arts in western Europe, ca. 1030–1200, considered within religious, economic, and social contexts. Requires research paper.</td>
<td></td>
</tr>
<tr>
<td>ARS 516</td>
<td>Critical Approaches to Gothic Art. (3)</td>
<td>selected semesters</td>
<td>Art of the late-Gothic style, ca. 1350–1525, considered within religious, social, economic, and political contexts. Requires research or reading project.</td>
<td></td>
</tr>
<tr>
<td>ARS 522</td>
<td>16th-Century Italian Art. (3)</td>
<td>once a year</td>
<td>Critical study of painting, sculpture, and architecture in 16th-century Italy in its religious and historical context.</td>
<td></td>
</tr>
<tr>
<td>ARS 528</td>
<td>18th-Century Art in Europe. (3)</td>
<td>once a year</td>
<td>Critical study of European art from the late Baroque to the early years of Neoclassicism.</td>
<td></td>
</tr>
<tr>
<td>ARS 530</td>
<td>Art of Spain and New Spain. (3)</td>
<td>once a year</td>
<td>Critical study of architecture, painting, and sculpture from 1500 to 1850. Lecture, conference.</td>
<td></td>
</tr>
<tr>
<td>ARS 532</td>
<td>Art, Politics, and Patronage, 1770–1850. (3)</td>
<td>fall</td>
<td>Critical analyses of political events in Europe. Examines issues of patronage, art as propaganda. Impact of war and revolution on visual arts.</td>
<td></td>
</tr>
<tr>
<td>ARS 534</td>
<td>Studies in Modern European Art, 1850–1914. (3)</td>
<td>once a year</td>
<td>Critical study of visual arts using primary source material from mid-19th century to WWI within philosophical, socioeconomic, and economic contexts. Lecture, tutorial. Prerequisite: instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 542</td>
<td>Critical Issues in American Painting I. (3)</td>
<td>once a year</td>
<td>Explores themes and social issues in American art with a critical study of American painting from the 18th century to 1850. Lecture, discussion. Prerequisites: ARS 101, 102.</td>
<td></td>
</tr>
<tr>
<td>ARS 543</td>
<td>Critical Issues in American Painting II. (3)</td>
<td>once a year</td>
<td>Explores themes and social issues in American art with a critical study of American painting from 1850 to 1900. Lecture, lab. Prerequisite: instructor approval.</td>
<td></td>
</tr>
<tr>
<td>ARS 544</td>
<td>American Modernism and Realism, 1900–1945. (3)</td>
<td>once a year</td>
<td>Critical study of the social, political, and artistic changes in American art during the first half of the 20th century. Prerequisites: both ARS 101 and 102 or only ARS 340.</td>
<td></td>
</tr>
<tr>
<td>ARS 562</td>
<td>Art of Ancient Mesoamerica. (3)</td>
<td>fall</td>
<td>Critical study of art and architecture of Mexico and Maya areas before Spanish contact. Lecture, conference.</td>
<td></td>
</tr>
</tbody>
</table>
GRADUATE PROGRAMS AND COURSES

ARS 565 Native Art of North America. (3)
Once a year
Critical examination of Native American art within culture, prehistory to the present. Prerequisites: both ARS 101 and 102 or only instructor approval.

ARS 574 Studies in Japanese Art. (3)
Once a year
Critical examination of the nature and history of Japanese art, its rich heritage and its indebtedness to foreign sources. Lecture, discussion. Prerequisites: both ARS 101 and 102 or only instructor approval.

ARS 575 Approaches to Chinese Painting. (3)
Fall
Critical history of Chinese painting from Eastern Chou to 1911. Emphasis on masters, regional developments, and conceptual underpinnings. Lecture, discussion. Prerequisites: both ARS 101 and 102 or only instructor approval.

ARS 591 Seminar. (1–12)
Once a year
Graduate seminar. Problems or criticism in topics that may include the following:
• American Art. (3–6)
• American Indian Art. (3–6)
• Ancient Art. (3–6)
• Baroque Art. (3–6)
• British Empire (3–6)
• Chinese Art. (3–6)
• Critical Theories in the Visual Arts. (3–6)
• Medieval Art. (3–6)
• Modern Art. (3–6)
• Native American Art. (3–6)
• Photographic History. (3–6)
• Pre-Columbian Art. (3–6)
• Renaissance Art. (3–6)
Prerequisite: instructor approval.

ARS 599 Thesis. (1–12)
Selected semesters
Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

ART (ART)
Ceramics

ART 460 Ceramic Clay. (3)
Spring
Research into various clay body formulations, local natural materials, slip glazes, and engobes. Lecture, lab, studio. Fee. Prerequisites: both ART 360 and 384 or only instructor approval.

ART 463 Ceramic Glaze. (3)
Fall
Glaze calculation and formulation using various glaze colors and surfaces. Lecture, lab, studio. Fee. Prerequisite: ART 460 or instructor approval.

ART 466 Special Problems in Ceramics. (3)
Fall, Spring, Summer
Emphasis on personal expression within structure of seminars, critiques, and studio work. Professional methods of presentation/documentation of work. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 364 or instructor approval.

ART 494 Special Topics. (1–4)
Selected semesters
Topics may include the following:
• Ceramics Printmaking Fee.
• Enameling Fee.
• Turning Fee.

• Vapor Glazes Fee.

ART 594 Conference and Workshop. (1–12)
Selected semesters
Topics may include the following:
• Turning Fee.

ART 598 Special Topics. (1–4)
Selected semesters
Topics may include the following:
• Ceramic Clay Fee.
• Ceramic Glaze Fee.
• Ceramics Printmaking Fee.
• Enameling Fee.
• Experimental Printmaking Fee.
• Special Problems in Ceramics Fee.

Drawing

ART 411 Advanced Drawing. (3)
Fall and Spring
Visual and intellectual concepts through problem solving and independent study. Emphasis on the individual creative statement. 6 hours a week. May be repeated for credit. Prerequisites: ART 311; instructor approval.

ART 414 Advanced Life Drawing. (3)
Fall and Spring
Various media and techniques on an advanced level. The human figure as an expressive vehicle in various contexts. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 315 or instructor approval.

ART 415 Art Anatomy. (4)
Selected semesters
Study of human anatomical structures as applied to the practice of figure-oriented art. 3 hours lecture, 5 hours studio a week. Fee. Prerequisite: ART 214.

ART 598 Special Topics. (1–4)
Selected semesters
Topics may include the following:
• Art Anatomy Fee.
• Life Drawing Fee.

Fibers

ART 476 Fibers: Multiple Harness Weaving. (3)
Fall and Spring
Advanced loom techniques and computer pattern design. Emphasis on individual design and loom application. Fee. Prerequisite: ART 113 or 115 or 376 or instructor approval.

ART 477 Printed Textiles. (3)
Once a year
Techniques for screen printing on fabric exploring pattern as a compositional element. Various stencil methods including photographic processes. May be repeated for credit. Studio. Fee. Prerequisite: ART 377 or instructor approval.

ART 478 Advanced Surface Design. (3)
Spring in Odd Years
Emphasis on personal expression with advanced problems in stitch resist, arashi shibori, transfers, indigo, vat and disperse dyes, and pigments. Studio. Prerequisites: both ART 377 and 477 or only instructor approval.

ART 494 Special Topics. (1–4)
Selected semesters
Topics may include the following:
• 3-Dimensional Fiber Fee.
• Dimensional Animation

Topics may include the following:
• 3-Dimensional Fiber Fee.
• Fibers and Surface Fee.
• Print Textiles Fee.
• Printed Textiles Fee.

ART 598 Special Topics. (1–4)

Selected semesters
Topics may include the following:
• Dimensional Animation Fee.

Metals

ART 472 Advanced Jewelry. (3)

Fall and spring
Jewelry making with emphasis on developing personal statements and craftsmanship. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 372; instructor approval.

ART 473 Advanced Metalworking. (3)

Once a year
Forging and forming techniques in individualized directions. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 373; instructor approval.

ART 598 Special Topics. (1–4)

Selected semesters
Topics may include the following:
• Jewelry Metalworking Fee.

Painting

ART 423 Advanced Painting. (3)

Fall and spring
Continuation of ART 324. 6 hours a week. May be repeated for credit. Prerequisite: ART 324.

ART 425 Advanced Figure Painting. (3)

Fall and spring
Continuation of ART 325. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 315, 324, 325.

ART 427 Advanced Watermedia. (3)

Fall and spring
Continuation of ART 327. Advanced techniques, concepts, and methods with watercolor and other water-based media on paper. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 327 or instructor approval.

ART 598 Special Topics. (1–4)

Selected semesters
Topics may include the following:
• Figure Painting Fee.
• Watercolor Fee.

Photography

ART 401 Nonsilver Photography. (3)

Fall and spring
Recognition of the inherent characteristics of nonsilver processes and their use in communicating ideas. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 304 or instructor approval.

ART 403 Senior Photographic Projects. (3)

Fall and spring
Technical and philosophical refinement of personal aesthetic with various photographic media. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 304 or instructor approval.

ART 404 Portraiture Photography. (3)

Fall and spring
Photographing people. Critical discussions and slide lectures on issues in portraiture. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 304 or instructor approval.

ART 405 Advanced Color Photography. (3)

Fall and spring
Intensive use of subtractive color process in photographic printing. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 305 or instructor approval.

ART 406 Photo Techniques. (3)

Fall and spring
Camera and darkroom techniques with emphasis on creative control of the black and white print. 6 hours a week. Prerequisite: ART 301 or instructor approval.

ART
GRADUATE PROGRAMS AND COURSES

ART 407 View Camera. (3)
fall and spring
View camera and darkroom techniques. Studio, lab. Fee. Prerequisite: ART 301 or instructor approval.
ART 409 Photographic Exhibition. (3)
once a year
Care of photographic prints, print presentation, and exhibition. Practical experience in gallery operations. 6 hours a week. May be repeated for credit. Prerequisite: ART 304 or instructor approval.
ART 498 Pro-Seminar. (1–7)
selected semesters
Topics may include the following:
• Landscape Photography: Theory
Fee.
ART 598 Special Topics. (1–4)
selected semesters
Topics may include the following:
• Advanced Color Photography
Fee.
• Collotype
Fee.
• Digital Photographic Images
Fee.
• Digital Printing
Fee.
• Documentary Photography
Fee.
• Issues in Digital Photography
Fee.
• Landscape Photography
Fee.
• Nonsilver Photography
Fee.
• Photographic Fabrications
Fee.
• Photogravure
Fee.
• Portraiture Photography
Fee.
• View Camera
Fee.

Printmaking
ART 452 Advanced Lithography. (3)
fall and spring
Continuation of ART 352. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 352 or instructor approval.
ART 454 Advanced Screen Printing. (3)
once a year
Continuation of ART 354. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 354 or instructor approval.
ART 455 Advanced Photo Processes for Printmaking. (3)
once a year
Continued study of photomechanical techniques and applications to printmaking or photographic processes. Fee. Prerequisite: ART 355 or instructor approval.
ART 456 Fine Printing and Bookmaking I. (3)
once a year
Letterpress printing and typography as fine art. Study of history, alphabets, mechanics of hand typesetting, presswork, and various forms of printed matter. Fee. Prerequisite: instructor approval.
ART 457 Fine Printing and Bookmaking II. (3)
once a year
Continuation of ART 456. Bookbinding, book design and printing, advanced typography, theory, and presswork. May be repeated for credit. Fee. Prerequisites: ART 456; instructor approval.
ART 458 Papermaking. (3)
fall and spring
History, theory, demonstrations, sheet forming, collage treatments, and 3-dimensional approaches. 6 hours a week. May be repeated for credit. Fee. Prerequisite: instructor approval.
ART 459 Monoprinting. (3)
fall and spring
Nonmultiple printed image using a variety of technical approaches. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 311, 323 (or any 300-level printmaking class); instructor approval.
ART 494 Special Topics. (1–4)
selected semesters
Topics may include the following:
• Artists' Books
Fee.
• Experimental Paper
Fee.
• Experimental Printmaking
Fee.
• Relief Printmaking
Fee.
ART 551 Intaglio Projects. (3)
fall and spring
Materials and methods of intaglio as a matrix for exploring various contemporary issues. Specifically structured to accommodate the graduate-level drawing student with no printmaking background. Studio. Fee.
ART 598 Special Topics. (1–4)
selected semesters
Topics may include the following:
• Advanced Photo Process for Printmaking
Fee.
• Advanced Screenprinting
Fee.
• Fine Printing and Bookmaking I
Fee.
• Fine Printing and Bookmaking II
Fee.
• Lithography
Fee.
• Monoprinting
Fee.
• Papermaking
Fee.
• Photo Processes for Printmaking
Fee.
• Relief Printmaking
Fee.
• Screen Printing

Sculpture
ART 431 Special Problems in Sculpture. (3)
fall and spring
Development of a personal approach to sculpture. Emphasis on form, individual problems, and related color technology. Professional practices and presentation. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 332; instructor approval.
ART 432 Neon Sculpture. (3)
fall
Techniques for creating neon in an art context. Glass tube bending and fabrication. Construction of artworks utilizing light-generating gases. 6 hours a week. May be repeated for credit. Fee. Prerequisite: instructor approval.
ART 433 Foundry Research Methods. (3)
fall and spring
Research in foundry techniques. Studio. Pre- or corequisite: ART 333 or instructor approval.
ART 436 Architectural Sculpture. (3)
selected semesters
Sculptural concepts as related to architecture and other man-made environments. Scale drawing, models, and relief sculpture. 6 hours a week. May be repeated for credit. Fee. Prerequisite: ART 332 or instructor approval.
ART 437 Film Animation. (3)
fall
Production of short 16mm films that feature articulated sculptural objects, models, dolls, puppets, and graphics through the use of single-frame filming techniques. 6 hours a week. May be repeated for credit. Fee. Prerequisite: instructor approval.

ART 438 Experimental Systems in Sculpture. (3)
spring
Simple electrical and mechanical systems that can be utilized in the context of studio art and installations. Requires active production of studio artworks. 6 hours a week. May be repeated for credit. Fee. Prerequisite: instructor approval.

ART 474 Advanced Wood. (3)
fall and spring
Extended experience and advanced techniques in the use of wood to create functional works of art. 6 hours a week. May be repeated for credit. Fee. Prerequisites: ART 374; instructor approval.

ART 494 Special Topics. (1–4)
selected semesters
Topics may include the following:
- Advanced Sculpture
- Carving
- Film: Post-Production
- Foundry Casting Methods
- Foundry Research Methods
- Live Action Filmmaking
- Intermedia
- Jewelry Metalworking
- Metals
- Painting
- Photography
- Printmaking
- Sculpture
- Studio Art
- Wood
Prerequisite: instructor approval.

ART 594 Conference and Workshop. (1–12)
selected semesters
Topics may include the following:
- Carving
- Drawing
- Fiber Art
- Intermedia
- Painting
- Sculpture
- Studio Art
- Wood

ART 598 Special Topics. (1–4)
selected semesters
Topics may include the following:
- Advanced Sculpture
- Architectural Sculpture
- Experimental Systems in Sculpture
- Film Animation
- Foundry Casting Methods
- Foundry Research Methods
- Live Action Filmmaking
- Neon Sculpture
- Special Problems in Sculpture
- Wood

Special Studio Art
ART 582 Art Research. (1–12)
fall, spring, summer
Independent study research using classroom facilities and supplies. Studio.

ART 621 Studio Problems. (3)
fall, spring, summer
Advanced study. 6 hours a week each section. May be repeated for credit. Topics may include the following:
- Ceramics
- Drawing
- Fiber Art
- Intermedia
- Jewelry Metalworking
- Metals
- Painting
- Photography
- Printmaking
- Sculpture
- Studio Art
- Wood

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Artist Diploma, Post-Bachelor’s
See “Post-Bachelor’s Artist Diploma,” page 276.

Asian Languages and Civilizations—Chinese/Japanese
See “Languages and Literatures,” page 245.

Students from all over the United States and Puerto Rico attending the 2002 Minority Graduate Education and Mountain States Alliance Graduate Fair and Student Research Conference took a tour of a laboratory in the Goldwater Center for Engineering Research at ASU.

Dennis Durband photo
Atmospheric Science
Interdisciplinary Certificate Program

www.asu.edu/clas/atmocert
480/965-6366 or -6436
SCOB 145

Joseph A. Zehnder, Codirector, Executive Committee
Anthony Brazel, Codirector, Executive Committee

Chemical and Materials Engineering
Assistant Professors: Allen, Dillner

Civil and Environmental Engineering
Assistant Professors: Allen, Dillner, Peccia

Geography
Professors: Balling, Brazel, Cerveny, Zehnder
Assistant Professor: Ellis

Geological Sciences
Professors: Christiansen, Greely

Mathematics and Statistics
Professor: Nicolaenko
Associate Professors: Gelb, Lopez, Mahalov, Ringhofer

Mechanical and Aerospace Engineering
Professors: Anderson, Boyer, Fernando
Assistant Professor: Calhoun

Plant Biology
Professors: Day, Klopatek

The interdisciplinary certificate program in Atmospheric Science is administered by an Executive Committee composed of faculty from the College of Engineering and Applied Sciences and the College of Liberal Arts and Sciences. The objective of this program is to recognize ASU graduate students who specialize in a thesis or dissertation topic related to the atmospheric or oceanic sciences.

A minimum of 16 semester hours consisting of three core courses and two electives, plus a capstone seminar (one semester hour), are required to complete the certificate. Students must also complete a dissertation on a topic related to the atmospheric or oceanic sciences under the supervision of a faculty member from one of the cooperating departments. A full description of the program is available on the Web at www.asu.edu/clas/atmocert.

For more information, access the program Web site, or call 480/965-6366 or -6436.

Bioengineering
Master’s and Doctoral Programs

www.eas.asu.edu/~bme
480/965-3028
ECG 334

Eric J. Guilbeau, Chair

Professors: Guilbeau, Towe

Associate Professors: Garcia, He, Iasemidis, Massia, Pizziconi, Sweeney, Yamaguchi

Assistant Professors: Muthuswamy, Panitch, Vernon

The Bioengineering faculty within the Department of Bioengineering offer graduate programs leading to the M.S. and Ph.D. degrees in Bioengineering. Areas of study include biochemical engineering, bioelectrical engineering, biomechanical engineering, biosystems/biortransport engineering, bioinstrumentation, biomaterial engineering, and biocontrol engineering. Research topics include artificial organs, biocontrol systems, biomechanics, bioinstrumentation, biomaterials, biosystems engineering, biotechnology, cardiovascular engineering, cellular and tissue bioengineering, neural bioengineering, noninvasive imaging, and rehabilitation engineering.

The faculty also participate in offering the Tri-University Master of Engineering degree program. See “Master of Engineering,” page 190, for program description.

Graduate Record Examination. Graduate Record Examination scores are required from all students.

Transition Program. Students applying to the Bioengineering M.S. or Ph.D. degree programs may have an undergraduate B.S. degree in a major field other than Bioengineering. The qualifications of transition students are reviewed by the department graduate committee, and a special program of transition course work is designed for successful applicants. In general, transition students should have had, or be prepared to take, calculus through ordinary differential equations, inorganic chemistry, physics, and a number of undergraduate engineering courses in order to be prepared for graduate bioengineering courses. Other course work from the undergraduate program may be required depending upon the research topic selected by the student. Transition students should contact the associate chair to evaluate the undergraduate transcript.

MASTER OF SCIENCE

See “Master’s Degrees,” page 93, for general requirements.

Program of Study. All candidates pursuing an M.S. degree in Bioengineering are required to complete an approved
A final oral examination in defense of the thesis is required.

Nonthesis Option

The nonthesis option within the M.S. degree program in Bioengineering is reserved for students who have full-time employment in industry and who intend to enroll in the M.S. degree program on a part-time basis, or for students who wish to continue their study of bioengineering past the baccalaureate level before seeking admission to a medical school.

Admission Requirements. Students seeking admission to the nonthesis option must request this option when applying for admission to the M.S. degree program. Students who are admitted to the thesis option are not allowed to subsequently transfer into the nonthesis option. Students admitted to the nonthesis option, however, may subsequently request approval to transfer into the thesis option. Additionally, the student must meet the following criteria to qualify for the nonthesis option: (1) be a full-time employee of a local industry and indicate at the time of application that he or she intends to pursue the M.S. degree on a part-time basis or (2) declare at the time of application that his or her career goal is to seek admission to a medical school.

Course Requirements. A total of 33 semester hours, including a bioengineering seminar and project, is required for graduation in the nonthesis option. The program of study for the nonthesis option requires the same set of core courses and seminar in bioengineering that is required of students in the thesis option. Instead of research and thesis hours, the student must complete six additional credits of course work selected from the catalog list of BME courses (the total course work requirement, including seminar, is 33 semester hours).

Project. Students admitted to the nonthesis option must also register for three semester hours of BME 593 Applied Project. Students are required to complete an in-depth literature survey and/or research design in some aspect of bioengineering, resulting in a written report.

Defense of the Applied Project. The student is required to successfully defend the Applied Project in bioengineering before his or her graduate supervisory committee.

BIOENGINEERING
GRADUATE PROGRAMS AND COURSES

RESEARCH ACTIVITY

For current information about research activity, access the Department of Bioengineering Web site at www.eas.asu.edu/~bme.

BIOENGINEERING (BME)

BME 411 Biomedical Engineering I. (3)

once a year

Reviews diagnostic and prosthetic methods using engineering methodology. Introduces transport, metabolic, and autoregulatory processes in the human body. Prerequisite with a grade of "C" or higher: BME 334.

BME 412 Biomedical Engineering II. (3)

once a year

Reviews electrophysiology and nerve pacing applications. Introduces biomechanics and joint/limb replacement technology, cardiovascular and pulmonary fluid mechanics, and the application of mathematical modeling. Prerequisite: instructor approval.

BME 415 Biomedical Transport Processes. (3)

fall

Principles of momentum, heat, and mass transport with applications to medical and biological systems and medical device design. Prerequisite with a grade of "C" or higher: BME 318.

BME 417 Biomedical Engineering Capstone Design I. (3)

fall

Technical, regulatory, economic, legal, social, and ethical aspects of medical device systems engineering design. Lecture, field trips. Prerequisite: ECE 300. Prerequisites with a grade of "C" or higher: BME 318.

BME 419 Biocontrol Systems. (3)

fall

Applies linear and nonlinear control systems techniques to analysis of neuromusculoskeletal, cardiovascular, thermal, and mass transfer systems of the body. Prerequisites: ECE 201; MAT 274.

BME 435 Physiology for Engineers. (4)

fall

Physiology of the nervous, muscular, cardiovascular, endocrine, renal, and respiratory systems. Emphasizes use of quantitative methods in understanding physiological systems. Lecture, lab. Prerequisites: a combination of BIO 188 and CHM 116 and PHY 131 or only instructor approval.

BME 470 Microcomputer Applications in Bioengineering. (4)

spring

Uses microcomputers for real-time data collection, analysis, and control of experiments involving actual and simulated physiological systems. Lecture, lab. Prerequisites: ECE 100, 334. Prerequisite with a grade of "C" or higher: BME 435.

BME 511 Biomedical Engineering I. (3)

once a year

Diagnostic and prosthetic methods using engineering methodology. Transport, metabolic, and autoregulatory processes in the body.

BME 512 Biomedical Engineering II. (3)

once a year

Electrophysiology and nerve pacing applications. Introduces biomechanics and joint/limb replacement technology, cardiovascular and pulmonary fluid mechanics, and mathematical modeling.

BME 513 Biomedical Instrumentation. (3)

fall

Principles of medical instrumentation. Studies of medical diagnostic instruments and techniques for the measurement of physiologic variables in living systems.

BME 514 Advanced Biomedical Instrumentation. (3)

selected semesters

Principles of applied biophysical measurements using bioelectric and radiological approach. Prerequisites: ECE 334; MAT 274 (or its equivalent).

BME 515 Biomedical Transport Processes. (3)

selected semesters

Principles of momentum, heat, and mass transport with applications to medical and biological systems and medical device design. Prerequisite: instructor approval.

BME 516 Topics in Biomechanics. (3)

fall

Mechanical properties of bone, muscle, and soft tissue. Static and dynamic analysis of human movement tasks such as locomotion. Prerequisite with a grade of "C" or higher: BME 318.

BME 518 Introduction to Biomaterials. (3)

spring

Topics include structure property relationships for synthetic and natural biomaterials, biocompatibility, and uses of materials to replace body parts. Prerequisite: ECE 350 (or its equivalent) or instructor approval.

BME 519 Topics in Biocontrol Systems. (3)

fall

Linear and nonlinear control systems analysis of neuromusculoskeletal, cardiovascular, thermal, and mass transfer systems of the body, including in-depth project. Prerequisites: both ECE 201 and MAT 274 or only instructor approval.

BME 520 Bioelectric Phenomena. (3)

selected semesters

Study of the origin, propagation, and interactions of bioelectricity in living things; volume conductor problem, mathematical analysis of bioelectric interactions, and uses in medical diagnostics.

BME 521 Neuromuscular Control Systems. (3)

spring

Overview of sensorimotor brain structures. Application of nonlinear, adaptive, optimal, and supervisory control theory to eye-head-hand coordination and locomotion.

BME 522 Biosensor Design and Application. (3)

once a year

Theory and principles of biosensor design and application in medicine and biology. Principles of measurements with biosensors. Prerequisite: instructor approval.

BME 523 Physiological Instrumentation Lab. (1)

fall

Laboratory experience with problems, concepts, and techniques of biomedical instrumentation in static and dynamic environments. Lab. Prerequisites: BME 435; ECE 334. Pre- or corequisite: BME 513.

BME 524 Fundamentals of Applied Neural Control. (3)

once a year

Fundamental concepts of electrical stimulation and recording in the nervous system with the goal of functional control restoration. Pre- or corequisite: BME 435 or instructor approval.

BME 525 Surgical Techniques. (2)

spring

Principles of surgical techniques, standard operative procedures, federal regulations, guidelines, and state-of-the-art methods. Lecture, lab.

BME 532 Prosthetic and Rehabilitation Engineering. (3)

once a year

Analysis and critical assessment of design and control strategies for state-of-the-art medical devices used in rehabilitation engineering. Pre- or corequisite: BME 416 or 516 or EPE 610.

BME 533 Transport Processes I. (3)

fall

Unified treatment of momentum, heat, and mass transfer from molecular, thermal, and continuum points of view. Continuum equations of microscopic and macroscopic systems and multicomponent and multiphase systems. Cross-listed as CHE 533. Credit is allowed for only BME 533 or CHE 533.

BME 534 Transport Processes II. (3)

spring

Continuation of BME 532 or CHE 533, emphasizing mass transfer. Cross-listed as CHE 534. Credit is allowed for only BME 534 or CHE 534. Prerequisite: BME 533 or CHE 533.

BME 543 Thermodynamics of Chemical Systems. (3)

fall

Classical and statistical thermodynamics of nonideal physicochemical systems and processes; prediction of optimum operating conditions.
Cross-listed as CHE 543. Credit is allowed for only BME 544 or CHE 543.

BME 544 Chemical Reactor Engineering. (3)
Spring
Reaction rates, thermodynamics, and transport principles applied to the design and operation of chemical reactors. Cross-listed as CHE 544. Credit is allowed for only BME 544 or CHE 544. Prerequisite: BME 543 or CHE 543.

BME 551 Movement Biomechanics. (3)
Spring
Mechanics applied to the analysis and modeling of physiological movements. Computational modeling of muscles, tendons, joints, and the skeletal system with application to sports and rehabilitation. Prerequisite: BME 416 or 516 or instructor approval.

BME 556 Medical Imaging Instrumentation. (3)
Selected semesters
Design and analysis of imaging systems and nuclear devices for medical diagnosis, therapy, and research. Laboratory experiments using diagnostic radiology, fluoroscopy, ultrasound, and CAT scanning. Lecture, lab. Prerequisite: instructor approval.

BME 558 Medical Imaging. (3)
Selected semesters
CT, SPECT, PET, and MRI. 3-dimensional in vivo measurements. Instrument design, physiological modeling, clinical protocols, reconstruction algorithms, and quantitation issues. Prerequisite: instructor approval.

BME 593 Applied Project. (1–12)
Selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Biology

Master’s and Doctoral Programs

ls.la.asu.edu/biology
480/965-3571
LSC 226

James P. Collins, Chair

Regents’ Professors: Alcock, Maienschein

Professors: Capco, Chandler, Church, Collins, Dowling, Elser, Faeth, Fisher, Grimm, Hazel, Hedrick, Lawson, Mcgaughey, Moore, Ohmart, Pyne, Rutowski, Satterlie, Smith, Walsberg

Associate Professors: Deviche, Fewell, Fouquette, Goldstein, Harrison, Orchinik

Assistant Professors: DeNardo, Gerber, Hofmann, Kinzig, Kumar, Laubichler, Lorson, Newfeld, Sabo, Wilson-Rawls

Research Professors: Davidson, Pearson

The faculty in the Department of Biology offer programs leading to the M.S. and Ph.D. degrees in Biology. A concentration in ecology is available, among other areas of study.

The faculty collaborate with the Departments of Microbiology and Plant Biology in offering the program leading to the Master of Natural Science degree when one of the concentrations is biology (see “Natural Science,” page 279).

Students admitted to the Master of Education degree program with a major in Secondary Education may also elect biology as the subject matter field.

These programs are designed to prepare students for careers in teaching and research in educational, medical, industrial, and governmental institutions.

Graduate Record Examination. Submission of scores on the verbal, quantitative, analytical, and advanced sections of the Graduate Record Examination is required for admission to the M.S. and Ph.D. degree programs.

Application Deadline. Completed college and departmental application materials should be received by December 15 for admission in the fall semester.

MASTER OF SCIENCE

The program of each student is prepared in consultation with the supervisory committee, consisting of a major professor and two additional faculty members. A minimum of 30 semester hours is required. The program must include six hours of thesis and one hour of seminar. The remainder of the program of study usually consists of (1) a mixture of course work, readings and conference, and seminars in the student’s primary field and related fields and (2) research credits. Courses and research credits can be distributed in any combination appropriate to the student’s individual educational goals. A typical program of study consists of six semester hours of thesis, one semester hour of seminar, nine to 15 hours of course work and additional seminars, and eight to 14 semester hours of research credit. A final oral examination covering the thesis and related subject matter is administered by the supervisory committee.

DOCTOR OF PHILOSOPHY

The Ph.D. program in the Department of Biology allows the student to acquire high research competency in one or more specialized areas while receiving a broad, solid grounding in biological sciences.

See “Doctor of Philosophy,” page 96, for general requirements.

Program of Study. The program of study is planned by the student and the supervisory committee, consisting of a major professor and four additional faculty members. The program is tailored to the needs of the individual student.

Foreign Language Requirements. None are required by the department. However, each student’s supervisory committee may specify a reading proficiency in one or more foreign languages if appropriate to the student’s educational objectives.

Comprehensive Examinations. The comprehensive examination consists of a written and oral component. To advance to candidacy for the Ph.D., the student must successfully complete three graduate seminars in areas different from the major area of emphasis; one of these must be a two-semester-hour writing seminar completed by the end of the third semester (see topics outlines under “Research Activity”). The seminars include evaluation of synthetic writing skills. A synthetic, detailed research proposal must
be completed by the fourth semester. The student must defend the proposal orally to the supervisory committee within three weeks after successful completion of the written research proposal.

Dissertation Requirements. A dissertation based on original research is required. (See “Doctoral Dissertations,” page 95.)

Final Examinations. A final defense of the dissertation is required. (See “Open Dissertation Defenses,” page 95.)

FACILITIES

The modern Life Sciences center houses well-equipped research laboratories and teaching facilities. The W. M. Keck Bioimaging Laboratory includes a laser-equipped scanning confocal microscope and an LFO high resolution scanning electronic microscope. The Life Sciences Electron Microscopy Laboratory includes both scanning and transmission electron microscopes as well as a freeze-fracture unit. Housing of laboratory animals and maintenance of breeding colonies are provided by the Animal Research Center. Arizona fauna is well represented in departmental collections. Desert, montane, riparian, and lacustrine habitats are within driving distance; species diversity is high.

RESEARCH ACTIVITY

Research of faculty and graduate students includes a wide range of biological topics. Current research interests within the department include these topics.

Behavior. Reproductive behavior; sexual selection; communication; neural and hormonal mechanisms of behavior; behavioral ecology; behavioral genetics.

Biology Education. Student reasoning patterns and alternative conceptual frameworks; the nature of scientific reasoning; learning styles, instructional techniques, and issues in curriculum development.

Cell and Molecular Biology. Cytoskeleton assembly; localization of RNA in oocytes and embryos; regulation of exocytosis and endocytosis; cell-division; cell-cell interaction; recombinant DNA; gene mapping; regulation of gene expression in eukaryotes; mechanisms of interferon action; cell signaling; confocal and electron microscopy; cellular bases of vertebrate photoperiodic responses.

Computational, Statistical, and Mathematical Biology. Functional genomics; population and statistical genetics; genome computing; computational molecular evolution; population and community ecology, including extinction risk, spatial dynamics, and the evolution and assembly of communities; spatial modeling of species richness; environmental monitoring and assessment; environmental statistics.

Conservation Biology. Conservation genetics; fragmentation effects; extinction dynamics; patterns and consequences of rarity; design and operation of reserves; urban ecology; conserving desert fishes and aquatic habitats; desert to rain-forest biodiversity; international dimensions; sustainable development.

Developmental Biology. Cell and organ differentiation; regulation; development of synapses; developmental genetics; control of oogenesis; in vitro fertilization; regulation of pattern formation; myogenesis; morphogens; intercellular signaling pathways.

Ecology. Life histories, dispersal, and foraging; plant-animal interactions; community structure; biogeography; physiological ecology; ecosystems structure and functioning; wildlife fisheries management; research in terrestrial and aquatic desert habitats reflecting the unique location of ASU; metapopulation dynamics.

Evolution. Population genetics, molecular evolution, systematics, speciation, evolution of behavior, morphological diversification.

Genetics. Molecular and developmental genetics; genetic regulatory mechanisms of cellular differentiation; behavioral genetics; variation in natural populations; molecular evolutionary genetics; functional genomics.

History and Philosophy of Biology. The nature of biological science and the way science changes over time; who does biology and why; what assumptions and contextual factors (like funding and ethical considerations) shape biology; issues of environmental history, theoretical biology, and development and genetics in society.

Neuroscience. Behavioral neuroendocrinology; invertebrate and vertebrate neurobiology; control of locomotion; actions of stress on the brain; mechanisms of hormone action in the brain; action of neuropeptides, neural basis of behavior; neuroanatomical correlates of behavior; hormonal control of neural plasticity.

Physiology. Membrane metabolism and function, thermal adaptation, regulation, and ion transport; tissue, epithelial, and cuticular function; comparative and reproductive endocrinology; neurophysiology; environmental physiology especially related to desert adaptations; parasites and reproduction; comparative biochemistry; the physiology of temperature; environmental regulation of gene expression; renal and respiratory physiology; energetics and physiology of flight.

BIOLOGY (BIO)

BIO 406 Computer Applications in Biology. (3) fall
Computer analysis techniques in biology emphasizing data entry, management and analysis, and graphic portrayal. Employs mainframe and microcomputers. 2 hours lecture, 3 hours lab. Cross-listed as PLB 432. Credit is allowed for only BIO 406 or PLB 432. Prerequisites: both BIO 187 and MAT 117 (or 210) or only instructor approval.

BIO 410 Techniques in Wildlife Conservation Biology. (3) fall
Field and analytical techniques used in evaluating population structure, viability and environmental impacts. Lecture, lab, Fee. Prerequisites: both BIO 317 and 320 or only instructor approval.

BIO 411 Advanced Conservation Biology I. (3) fall
Principles of conservation science, biology of threatened species, management principles that meet conservation goals, emphasizing North American ecosystems. Prerequisites: BIO 317, 320.

BIO 412 Advanced Conservation Biology II. (3) spring
Global biodiversity patterns, processes, and conservation; global environmental change; sustainable use of natural resources; emphasizing international approaches to conservation biology. Prerequisites: BIO 317, 320.
BIO 415 Biometry. (4) fall
Statistical methods applied to biological problems, design of experiments, estimation, significance, analysis of variance, regression, correlation, chi square, and bioassay; the use of computers. Does not satisfy laboratory requirements for the College of Liberal Arts and Sciences General Studies program. 3 hours lecture, 3 hours lab. Prerequisite: MAT 210 (or its equivalent).

BIO 416 Professional Values in Science. (3) once a year
Considers issues related to values in science such as collaboration, finances, legal issues, media, mentoring, ownership of ideas, scientific integrity. Discussion, student projects. Cross-listed as HPS 410. Credit is allowed for only BIO 416 or HPS 410.

BIO 417 Experimental Design. (3) spring
Fixed, random, mixed models; crossed and nested factorial designs; balanced and unbalanced data; completely randomized, blocked, repeated measure designs; ANCOVA. Prerequisite: BIO 415 (or its equivalent).

BIO 423 Population and Community Ecology. (3) selected semesters
Organization and dynamics of population and communities, emphasizing animals. Theoretical and empirical approaches. Prerequisite: BIO 320 or instructor approval.

BIO 424 Mathematical Models in Ecology. (4) selected semesters
Mathematical modeling of populations, communities, and ecosystems, including case studies and student-designed projects. 3 hours lecture, 3 hours lab. Prerequisites: BIO 320; a course in calculus.

BIO 425 Animal Ecology. (3) selected semesters
Physiological and behavioral adaptations of individual animals to both abiotic and biotic environments. Prerequisite: BIO 320.

BIO 426 Limnology. (4) selected semesters
Structure and function of aquatic ecosystems, with emphasis on freshwater lakes and streams. 3 hours lecture, 3 hours lab or field trip. Fee. Prerequisite: BIO 320 or instructor approval.

BIO 428 Biogeography. (3) fall
Environmental and historical processes determining distributional patterns of animals and plants, emphasizing terrestrial life. Prerequisites: BIO 187 (or its equivalent); junior standing.

BIO 435 Research Techniques in Animal Behavior. (3) selected semesters
Experimental and field studies of animal behavior; description and quantification of animal behavior and interpretation of behavior within an evolutionary framework. 1 hour lecture, 6 hours lab. Prerequisite: BIO 331.

BIO 441 Cytogenetics. (3) selected semesters
Chromosomal basis of inheritance. Cross-listed as PLB 412. Credit is allowed for only BIO 441 or PLB 412. Prerequisite: BIO 340.

BIO 442 Cytogenetics Laboratory. (2) selected semesters
Microscopic analysis of meiosis, mitosis, and aberrant cell division. 6 hours lab. Cross-listed as PLB 413. Credit is allowed for only BIO 442 or PLB 413. Pre- or corequisite: BIO 441 or PLB 412.

BIO 446 Principles of Human Genetics. (3) once a year
Molecular and cellular analysis of the human genome. Prerequisite: BIO 340.

BIO 450 Advanced Developmental Biology. (3) spring
Current concepts and experimental methods involving differentiation and biosynthetic activities of cells and organisms, with examples from microorganisms, plants, and animals. Prerequisite: BIO 351.

BIO 453 Animal Histology. (4) spring
Microscopic study of animal tissues. 3 hours lecture, 3 hours lab. Fee. Prerequisite: BIO 187 or instructor approval.

BIO 454 Aquatic Insects. (3) selected semesters
Systematics and ecology of aquatic insects. Prerequisite: BIO 386.

BIO 464 Photobiology. (3) selected semesters
Principles underlying the effects of light on growth, development, and behavior of plants, animals, and microorganisms. Cross-listed as PLB 440. Credit is allowed for only BIO 464 or PLB 440. Prerequisites: CHM 231 (or 331); 12 hours in life sciences.

BIO 465 Neurophysiology. (3) spring in even years
Detailed treatment of cellular and organismal neurophysiology and nervous system function. Prerequisite: BIO 360.

BIO 466 Neurophysiology Laboratory. (2) selected semesters
Intracellular and extracellular electrophysiological recording techniques, histological preparations, and dye-filling techniques. 6 hours lab. Pre- or corequisite: BIO 465.

BIO 470 Systematic Zoology. (4) spring in odd years
Philosophy, theory, practice of interpreting animal diversity, including species concepts speculation, nomenclature, and evolutionary and phylogenetic classification emphasizing phylogenetics. 3 hours lecture, 3 hours lab. Prerequisites: junior standing; 18 hours in life sciences.

BIO 471 Ornithology. (3) spring in odd years
Classification, structure, habits, ecology, and distribution of mammals, emphasizing North American forms, 3 hours lecture, 3 hours lab or field trip, weekend field trips. Fee. Prerequisite: BIO 370 or instructor approval.

BIO 472 Mammalogy. (4) fall in odd years
Systematics and biology of recent and extinct fishes. 2 hours lecture, 3 hours lab or field trip, weekend field trips. Fee. Prerequisites: both BIO 370 and 425 or only instructor approval.

BIO 473 Ichthyology. (3) spring in odd years
Systematics and biology of recent and extinct reptiles and amphibians. 2 hours lecture, 3 hours lab or field trip. Fee. Prerequisite: BIO 370.

BIO 474 Herpetology. (3) spring in even years
Classification, structure, habits, ecology, and distribution of mammals, emphasizing North American forms, 3 hours lecture, 3 hours lab or field trip, weekend field trips. Fee. Prerequisite: BIO 370 or instructor approval.

BIO 480 Methods of Teaching Biology. (3) spring
Methods of instruction, experimentation, organization, and presentation of appropriate content in biology. Prerequisite: 20 hours in the biological sciences.

BIO 495 Undergraduate Thesis. (3) fall, spring, summer
Guided research culminating in the preparation of an undergraduate thesis based on supervised research done in this and previous semesters. Prerequisites: at least 3 hours of BIO 310 (or 499); formal conference with instructor; instructor and department chair approval.

BIO 502 Transmission Electron Microscopy. (3) selected semesters
Theory, use, and methods of preparing biological materials for transmission electron microscopy. Lecture, lab. Materials fee. Prerequisite: instructor approval.

BIO 505 Scanning Electron Microscopy. (3) selected semesters
Theory, use, and methods of preparing biological materials for scanning electron microscopy. 2 hours lecture, 3 hours lab. Materials fee. Prerequisite: instructor approval.

BIO 508 Scientific Data Presentation. (2) spring
Techniques necessary for presentation of scientific data used in journal publications, grant proposals, and visual presentations. Lecture, lab. Prerequisite: instructor approval.
GRADUATE PROGRAMS AND COURSES

BIO 520 Biology of the Desert. (2)
selected semesters
Factors affecting plant and animal life in the desert regions and adaptations of the organisms to these factors. Prerequisite: 10 hours in biological sciences or instructor approval.

BIO 522 Populations: Evolutionary Ecology. (3)
selected semesters
Factors affecting plant and animal life in the desert regions and adaptations of the organisms to these factors. Prerequisite: 10 hours in biological sciences or instructor approval.

BIO 524 Ecosystems. (3)
selected semesters
Structure and function of terrestrial and aquatic ecosystems, with emphasis on productivity, energetics, biogeochemical cycling, and systems integration. Prerequisite: BIO 320 (or its equivalent).

BIO 526 Quantitative Ecology. (3)
selected semesters
Sampling strategies, spatial pattern analysis, species diversity, classification, and applications of multivariate techniques to ecology. 2 hours lecture, 3 hours lab. Prerequisites: BIO 415 (or its equivalent); a course in ecology.

BIO 529 Advanced Limnology. (3)
selected semesters
Recent literature, developments, methods, and limnological theory; field and lab application to some particular topic in limnology. Prerequisite: BIO 426.

BIO 543 Molecular Genetics. (3)
fell
Nature and function of the gene; emphasis on the molecular basis of inheritance and gene expression in procaryotes and eucaryotes. Prerequisites: BIO 340 or equivalent.

BIO 545 Populations: Evolutionary Genetics. (3)
selected semesters
Mathematical models in the description and analysis of the genetics of populations. Prerequisites: a combination of BIO 320 and 345 and 415 or only instructor approval.

BIO 547 Techniques in Evolutionary Genetics. (4)
selected semesters
Practical experience in modern techniques for the study of evolution. Lecture, lab, Prerequisites: BIO 340, 345; instructor approval.

BIO 550 Advanced Cell Biology. (3)
spring
Applications of contemporary electron microscopic and biochemical/molecular techniques for studying eukaryotic cell functions. Mechanisms of intracellular protein trafficking. Prerequisites: BIO 353 or 360 or its equivalent or PLB 360; CHM 231 (or 331 or its equivalent).

BIO 551 Biomembranes. (3)
selected semesters
Structure and function of biological membranes, emphasizing synthesis, fluidity, exocytosis, endocytosis, and cell responses to hormones and neurotransmitters. Prerequisites: BIO 353 and CHM 231 (or 331 or its equivalent).

BIO 552 Developmental Genetics. (3)
spring
Genetic approaches to the analysis of development during the life cycle of eukaryotic organisms, and the role of genes in the unfolding of the differentiated phenotype. Prerequisite: BIO 340.

BIO 560 Comparative Physiology. (3)
selected semesters
Analyzes function in invertebrates and vertebrates, emphasizing evolutionary trends in physiological systems. Prerequisite: BIO 360 (or its equivalent).

BIO 566 Environmental Physiology. (3)
selected semesters
Physiological responses and adaptations of animals to various aspects of the physical environment. Prerequisites: BIO 320, 360.

BIO 568 Mammalian Physiology. (3)
selected semesters
Detailed treatment of mammalian organ system functions emphasizing integrative mechanisms. Prerequisite: BIO 360 (or its equivalent).

BIO 569 Cellular Physiology. (3)
selected semesters
Emphasizes the molecular basis for cell structure and function. Prerequisites: BIO 360; a course in organic chemistry.

BIO 583 OTS: Fieldwork in Tropical Biology. (6–8)
spring and summer
Intensive field-orientated classes with Organization for Tropical Studies (OTS) in Costa Rica with emphasis on research in ecology and systematics. Lecture, lab, fieldwork. Cross-listed as PLB 583. Credit is allowed for only BIO 583 or PLB 583. Prerequisites: graduate standing; a course in basic ecology.

BIO 584 Internship. (1–12)
tall and spring

BIO 591 Seminar. (1–12)
tall and spring
May be repeated for credit. Topics may include the following:
• Adaptations. (1–3)
• Behavior. (1–3)
• Cell Biology. (1–3)
• Ecology. (1–3)
• Evolution. (1–3)
• Genetic Engineering. (1–3)
• Genetics. (1–3)
• Physiology. (1–3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Building Design

See “Master of Science in Building Design,” page 111.

Tinna Traustadottir (left), a Ph.D. candidate, operates CO2 monitoring equipment while Ph.D. student Pamela Bosch runs on a treadmill during a physical stress test.
The faculty in the College of Business offer a Ph.D. degree in Business Administration and a Master of Business Administration (M.B.A.) degree offered in day (full-time), evening, and executive programs.

Other professional master’s degrees offered through the College of Business are described in this catalog under their respective degree program headings.

MASTER OF BUSINESS ADMINISTRATION

The central theme of the program is to build and strengthen capabilities in knowledge and analysis of the functional areas of business, basic skills, and managerial abilities. Knowledge involves textbook and case materials. Basic skills include computing, writing and critical thinking, presentation and speaking, team and group work, interpersonal relations, and time management. There is a strong team emphasis throughout the ASU curriculum.

The M.B.A. program is supported by each of the seven academic units within the College of Business.

Admission. See “Admission to the Graduate College,” page 84. All students applying to graduate business administration programs (except those applying to the M.S. degree in Economics) are required to take the GMAT. The TOEFL is required of all international applicants whose native language is not English or who are not graduates of an institution located in the United States. The TSE is not required for admission to the ASU M.B.A. program. However, it may be required for a dual degree program. For more information on testing, call 609/921-9000, fax 609/734-5410, access the Web site at www.toefl.org, send e-mail to etsinfo@ets.org, or write

Business Administration

Master’s and Doctoral Programs

School of Accountancy and Information Systems

www.cob.asu.edu/acct
480/965-3631
BA 223

Department of Finance

www.cob.asu.edu/fin
480/965-3131
BAC 519

Department of Management

www.cob.asu.edu/mgt
480/965-3431
BA 323

Department of Marketing

www.cob.asu.edu/mkt
480/965-3621
BAC 400

Department of Supply Chain Management

www.cob.asu.edu/scm
480/965-6044
BA 318

Philip M.J. Reckers, Director, School of Accountancy and Information Systems

Professors: J.R. Boatsman, Christian, Gou, Johnson, Kaplan, Pany, Pei, Philippakis, Reckers, Roy, Schultz, Smith, St. Louis, Steinbart, Vinze, Wyndels

Associate Professors: Boyd, David, Golen, Gupta, Hwang, Iyer, Keim, Kulkarni, Moeckel, O’Dell, O’Leary, Regier, Whitecotton, Yen

Assistant Professors: Bhattacharya, Chen, Chenoweth, Comprix, Dowling, Lee, O’Donnell, Petersen, Ravindran, Robinson, Roussinov, Rowe, Santanam, Shao, Weiss

Senior Lecturers: Goldman, Maccracken, Shrednick

Lecturers: J.L. Boatsman, Geiger, Hayes

Herbert M. Kaufman, Chair, Department of Finance

Professors: Booth, Coles, Kaufman, Sushka

Associate Professors: Cesta, Gallinger, Hertz, Hoffmeister

Assistant Professors: Deli, Griffin, Juergens, Martin, Nardari, Perry

Lecturer: Durham

William H. Glick, Chair, Department of Management

Professors: Ashforth, Bohlander, Cardy, Dooley, Glick, Gomez-Mejia, Hershauer, Hom, Kinicki, Kulik, Penley, V. Smith-Daniels

Associate Professors: Boyd, Brenenstuhl, Callarman, Choi, Cook, Keats, Keller, Moorhead, Olivas, Roberson, Rungtusanatham, D. Smith-Daniels, Van Hook

Assistant Professors: Blancero, Koka, Lane

Michael P. Mokwa, Chair, Department of Marketing

Professors: Bitner, Brown, Hutt, Jackson, Kumar, Lastovicka, Mokwa, L. Ostrom, Reingen, Schlacter, Ward

Associate Professors: Blasko, Nowlis, Sinha, Stephens, Walker

Assistant Professor: A. Ostrom

Joseph R. Carter, Chair, Department of Supply Chain Management

Professors: J. Carter, P. Carter, Ellram, Guntermann, Hendrick, Jennings, Kirkwood, Pearson, Smeltzer

Associate Professors: Aranda, Brooks, Butler, Choi, Davis, Dundas, Keefer, Leonard, Lock, Lynch, Maltz, Siferd, Verdini

Students applying to the M.B.A. program are required to have at least two years of full-time work experience and should submit an essay for the degree program addressing commitment, goals, qualifications, and reasons for interest in the program. Applicants are to provide letters of recommendation commenting on the student’s motivation, commitment, achievements, work experience, and opportunity for success in the program. In addition to the above data, students are to communicate their interest for either the day, evening, or executive program. Applications are to be completed online.

Registration. Registration in courses numbered 502 and above is limited to students who have been admitted to a graduate degree program, have the approval of the M.B.A. program office, and have the prerequisites of calculus and computer literacy.

Structure of the M.B.A. Program. M.B.A. courses are open only to students admitted to the M.B.A. program.

Program Requirements. While there are no business course prerequisites, applicants must have computer proficiency and expertise in using a spreadsheet package, a word processing package, a presentation software package, an e-mail package, and an Internet browser. Potential students must also demonstrate strong quantitative ability. This is accomplished through an above average performance (65th percentile or above) on the GMAT quantitative section or a college math course in calculus or advanced statistics.

At least 48 hours are required to complete the evening and executive programs. The day program has additional requirements that vary by area of study. Students are admitted to the fall semester only and, generally, enter and graduate as a class in two years.

The core courses are designed to provide a foundation in business knowledge and skills and must be taken in the prescribed sequence.

Elective courses build upon the business core and focus on the further development of an area of study.

The College of Business does not accept credits earned while students are in nondegree status; moreover, graduate business courses are not open to nondegree students.

Foreign Language Requirements. None.

Thesis Requirements. None.

Comprehensive Examinations. All students must successfully complete the comprehensive requirement established by the College of Business and Graduate College for the M.B.A. degree. The comprehensive exam is integrated with MGT 589 Strategic Management. Students passing this course with a grade of “A” or “B” satisfy the comprehensive exam requirement.

Dual/Concurrent Degree Programs. See “Dual Degree Programs,” page 59.

DOCTOR OF PHILOSOPHY

The Ph.D. degree in Business Administration prepares candidates for scholarly careers at leading educational institutions and for positions in business and government organizations where advanced research and analytical capabilities are required. Major emphasis is placed upon the development of expertise in a chosen subject area, a disciplined and inquiring mind, competence in research methodology, and skill in effectively communicating advanced business concepts.

Students are encouraged to work closely with the faculty from the beginning of their programs. A ratio of resident doctoral students to faculty of less than one to one ensures that faculty may serve effectively as mentors for doctoral students.

Admission. A completed application for admission to the Ph.D. in Business Administration degree program includes

1. application for admission to the Graduate College,
2. undergraduate and postgraduate transcripts,
3. Graduate Management Admission Test score or scores from the Graduate Record Examination,
4. applicant’s letter of personal career objectives and rationale for pursuing the Ph.D. program,
5. three letters of recommendation,
6. Test of Spoken English score for applicants whose native language is not English, and
7. Test of English as a Foreign Language score for applicants whose native language is not English and
who have not completed a degree from a U.S. college or university.

Admission is granted for fall semesters only. The deadline for receipt of all required application materials is February 1.

Areas of Concentration. The Ph.D. student may choose from among six areas of concentration: accountancy, computer information systems, finance, management, marketing, and supply chain management.

The accountancy specialization area includes financial accounting, managerial accounting, tax policy, auditing, and information systems. See “Concentration in Accountancy,” page 133.

Research activities in information management encompass areas of theory and application in computer information systems. See “Concentration in Computer Information Systems,” page 133.

Research interests in the finance faculty offering the finance concentration focus on corporate finance, investments, financial markets, banking, and entrepreneurial finance.

The management concentration requires three core courses: organizational theory, organizational behavior, and research methodology. In addition to these core courses, students choose one of two specialty tracks: strategic management or human resource management. See “Concentration in Management,” page 135.

Research conducted by the marketing faculty offering the marketing concentration is focused in several areas: advertising, buyer behavior, distribution channels, services marketing, and other dimensions of marketing, including sales management, industrial marketing, and public-policy implications of marketing.

The faculty in the Department of Supply Chain Management offer the supply chain management concentration and are actively involved in the input-conversion-output process.

Program of Study. See “Doctor of Philosophy,” page 96, for general requirements. The Ph.D. degree program requires mathematical competence through linear algebra and calculus and computer skills. The program of study includes graduate study in economics, behavioral sciences, and quantitative/statistical analysis. The advanced program is composed of an area of concentration and supporting course work that best prepares students for conducting scholarly work in their areas of interest.

Comprehensive Examinations. A written comprehensive examination, designed to ascertain the candidate’s knowledge and orientation in the major field of study and fitness to proceed to the completion of a dissertation, is required at the end of course work. An additional written comprehensive examination on a candidate’s supporting course work is a departmental option. An oral examination after completion of written examinations is also a departmental option.

Dissertation Requirements. The candidate must present an acceptable dissertation based on original investigation. The dissertation must represent a significant contribution to knowledge, be written in a scholarly manner, and demonstrate the ability of the candidate to do independent research of high quality.

Final Examinations. A final oral examination in defense of the dissertation is required. The examination covers the subject matter of the dissertation and the field most nearly corresponding with that of the dissertation.

School of Accountancy and Information Systems

DOCTOR OF PHILOSOPHY

Concentration in Accountancy

The objective of the Ph.D. degree in Business Administration with a concentration in accountancy is to prepare scholars to conduct high-quality research. Graduates teach in the fields of financial and managerial accounting, auditing, information systems, and taxation. This program allows students to develop the capability to review, analyze, conduct, and publish research through a series of research seminars and theory-building and statistical course work that supplement and complement students’ abilities and desires. In addition, Ph.D. students participate in ongoing research projects in conjunction with faculty members in the School of Accountancy and Information Management.

Admission. A completed application for admission to the Ph.D. in Business Administration degree program must be submitted by the deadline of February 1. Admission is granted for the fall semester only. For more information, access the College of Business Web site at www.cob.asu.edu/phd.

Program of Study. See “Doctor of Philosophy,” page 96, for general requirements. The Ph.D. degree program requires mathematical competence and computer skills. The program of study includes graduate study in economics, behavioral sciences, and quantitative/statistical analysis. A minimum of 30 semester hours of doctoral course work and 24 semester hours of dissertation and/or research are required to be taken at ASU Main.

Comprehensive Examination. A written comprehensive examination is required once all course work has been completed. An oral examination after completion of written examinations is a departmental option. Specific questions can be directed to the Accountancy faculty advisor.

Dissertation. The candidate must present an acceptable dissertation based on original investigation. The dissertation must represent a significant contribution to knowledge, be written in a scholarly manner, and demonstrate the ability of the candidate to do independent research of high quality. The final oral examination in defense of the dissertation is mandatory and must be held on the ASU Main campus.

Concentration in Computer Information Systems

The objective of the Ph.D. in Business Administration with a concentration in computer information systems is to prepare scholars for careers at leading educational institutions. This program allows students to develop the capability to review, analyze, conduct, and publish research
through a series of research seminars and additional supporting course work. In addition, Ph.D. students participate in ongoing research projects in conjunction with faculty members in the School of Accountancy and Information Management.

Admission. A completed application for admission to the Ph.D. in Business Administration degree program must be submitted by the deadline of February 1. Admission is granted for the fall semester only. For more information, access the College of Business Web site at www.cob.asu.edu/phd.

Program of Study. See “Doctor of Philosophy,” page 96, for general requirements. The Ph.D. degree program requires mathematical competence and computer skills. The program of study includes graduate study in economics, behavioral sciences, and quantitative/statistical analysis. A minimum of 30 semester hours of doctoral course work and 24 semester hours of dissertation and/or research are required to be taken at ASU Main.

Comprehensive Examination. A written comprehensive examination is required once all course work has been completed. An oral examination after completion of written examinations is a departmental option. Specific questions can be directed to the CIS faculty advisor.

Dissertation. The candidate must present an acceptable dissertation based on original investigation. The dissertation must represent a significant contribution to knowledge, be written in a scholarly manner, and demonstrate the ability of the candidate to do independent research of high quality. The final oral examination in defense of the dissertation is mandatory and must be held on the ASU Main campus.

Department of Finance

FINANCE (FIN)

FIN 502 Managerial Finance. (3) once a year
Financial decision making, including net present value, interest rates, risk and return, efficient capital markets, capital budgeting, and financial forecasting. Lecture, cases, discussion. Prerequisites: ACC 502; ECN 502; QBA 502.

FIN 521 Investment Management. (3) once a year

FIN 527 Derivatives and Risk Management. (3) once a year
Characteristics and pricing of forwards, futures, swaps, options. Applications of instruments for hedging strategies, corporate risk management, and capital budgeting. Lecture, cases, discussion. Prerequisites: FIN 502, 551.

FIN 531 Financial Markets and Intermediaries. (3) once a year
How the financial system affects the firm. Intermediation and capital markets. Risk management strategies, value at risk and financial instruments. Lecture, cases, discussion. Prerequisites: FIN 521, 527.

FIN 551 Applied Fundamental Analysis. (3) once a year
Analyzes financial documents to determine quality of earnings. Forensic financial analysis to diagnose financial health and sustainable growth. Lecture, cases, discussion. Prerequisite: FIN 502.

FIN 556 International Financial Management. (3)

FIN 561 Strategic Financial Management. (3) once a year
Capstone case-oriented course in strategic applications of corporate finance. Acquisition, allocation, and management of funds within the business enterprise. Cases, discussion. Prerequisites: FIN 531, 556.

FIN 581 Advanced Valuation Methods. (3) once a year
Analyzes practical aspects of valuing the enterprise using economic value added, free cash flow, and other financial techniques. Lecture, cases, discussion. Prerequisite: FIN 502.

FIN 591 Entrepreneurial Finance. (1–12)
once a year
Applies financial economic principles to solve problems associated with incubating and new ventures. Planning, understanding financial needs, structuring contracts. Lecture, cases, discussion. Prerequisite: FIN 502.

FIN 594 Entrepreneurial Finance. (3) once a year
Applies financial economic principles to solve problems associated with incubating and new ventures. Planning, understanding financial needs, structuring contracts. Lecture, cases, discussion. Prerequisite: FIN 502.

FIN 781 Theory of Finance. (3) once a year
Fundamental tools of financial economics; asset pricing, arbitrage, option pricing, capital structure, dividend policy, asymmetric information, and transaction-cost economics. Prerequisites: FIN 502, 521, 531.

FIN 791 Doctoral Seminar in Finance. (1–12)
once a year
Topics may include the following:
• Financial Institutions and Markets. (3)
 Economic and monetary theory applied to financial markets and institutions; implications of financial structure for market performance and efficiency.
• Financial Management. (3)
 Financial theory pertaining to capital structure, dividend policy, valuation, cost of capital, and capital budgeting.
• Investments. (3)
 Investments and market theory; efficient markets hypothesis; option and commodity markets. Prerequisite: FIN 781.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Department of Management

MASTER OF BUSINESS ADMINISTRATION

The faculty in the Department of Management participate in offering the high technology M.B.A., executive M.B.A., evening M.B.A., and day M.B.A. programs. These programs are administered by the College of Business. For more information see “College of Business,” page 58. Areas of study offered to high technology, evening, and executive M.B.A. students include process management in high technology organizations; globalization and diversity management; entrepreneurship and small business development; and management consulting.
DOCTOR OF PHILOSOPHY

Concentration in Management

The faculty in the Department of Management offer students the opportunity to obtain a Ph.D. degree in Business Administration with a concentration in management. The doctoral program places primary emphasis on the development of research competence and emphasizes teaching as a vehicle to academic professionalism. The mission of the program is to provide an environment that is conducive to the development of scholars who are prepared to assume the diverse responsibilities of positions at leading research universities. The goal is to prepare students for research careers in the academic community.

Doctoral students are encouraged to design an individually meaningful course of study within the larger context of the management field. Opportunities for doing this are available through course work, individual work with faculty members, and independent research and study. Students in the Ph.D. program select a series of Ph.D. course modules within the department and several supporting courses from other departments on campus. Students develop additional focus and expertise through collaboration on major papers with individual faculty members.

The faculty in the Department of Management cover the areas of human resource management, management science, operations management, organizational behavior, organizational theory, and strategic management. The faculty’s research and teaching emphasizes high tech management, quality, process and project management, decision analysis, globalization, diversity, small business and entrepreneurship, change management, stress, job loss, organizational identity, corporate governance, and human resource management practices. The faculty has distinguished itself with research and publications in premier journals. The department ranks 12th internationally for its rate of publication in premier academic journals. The department also ranks sixth internationally in premier journal articles that impact practice in operations and management science.

Further information, links to courses, current faculty, and updates on the Department of Management areas of study for the M.B.A. programs can be found on the Web at www.cob.asu.edu/mgt.

General information on the M.B.A. programs can be found at www.cob.asu.edu/mba.

Further information, application procedures, links to current faculty, and updates on the Ph.D. program in Business with a concentration in management can be found at www.cob.asu.edu/mgt/degree/PhDMainPg.htm.

MANAGEMENT (MGT)

MGT 410 Responsible Leadership. (3) fall, spring, summer
Values, core beliefs, legal and ethical mandates and cultural norms as they apply to the conduct of organizations; application through a Service Learning project. Interactive, learner-centered. Prerequisites: MGT 310, 320.

MGT 413 Compensation Management. (3) fall and spring
Establishing base and incentive pay with job analysis, job evaluation, and wage surveys; performance appraisal; conformance to compensation laws. Prerequisite: MGT 420.

MGT 420 Performance Management. (3) fall, spring, summer
Development of skills and knowledge to lead associates effectively; hiring, developing, evaluating, retaining, and rewarding employees. Preparation for leadership roles. Lecture, discussion, interactive, learner-centered. Prerequisites: MGT 310, 320.

MGT 423 Employee-Management Relations. (3) fall and spring
Employment relationship in union/nonunion setting. Employee-management rights/responsibilities, complaint administration, negotiations, union structure, and mock negotiations. Prerequisites: MGT 310, 320.

MGT 433 Management Decision Analysis. (3) fall and spring
Decision-making concepts and methods in the private and public sectors and their application to organizational problems. Understanding of individual and group decision making. Prerequisites: only MGT 300 or both MGT 310 and 320.

MGT 440 Small Business and Entrepreneurship. (3) fall and spring
Opportunities, risks, and problems associated with small business development and operation.

MGT 445 Business Plan Development. (3) fall and spring
Develops a complete strategic business plan emphasizing the planning process undertaken by successful small business owners and entrepreneurs. Lecture, discussion, experiential exercise. Prerequisite: MGT 440.

MGT 459 International Management. (3) fall and spring
Concepts and practices of multinational and foreign firms. Objectives, strategies, policies, and organizational structures for operating in various environments. Credit is allowed for only MGT 459 or IBS 494 ST: International Management or ST: Multinational Management. Prerequisite: IBS 300.

MGT 460 Strategic Leadership. (3) fall, spring, summer
Systems theory of organizations, strategy formulation and administration in organizations, creating organizational cohesiveness, and leading change within organizations. Lecture, cases, exercises. Prerequisites: MGT 410, 420; completion of 100 hours including all business administration core requirements. Corequisite: OPM 450.

MGT 494 Special Topics. (1–4) selected semesters
Current topics in management, primarily designed for business majors. See the Schedule of Classes for current offerings of courses at ASU Main and East. Topics may include the following:
• Applied International Management. (3)
• Cultural Factors in International Business. (3) Prerequisite: IBS 300 (or 494) or MGT 300 (or 495).
• Strategic Management. (3)

MGT 502 Organization Theory and Behavior. (3) once a year
Important concepts and applications in management, including communication, decision making, group dynamics, leadership, motivation, organization change, and organization design. Prerequisites: computer literacy; graduate degree program student.

MGT 522 Human Resource Activity and the Management of Diversity. (3) once a year
Applies general and human resource management principles to work effectively with a diverse spectrum of people. Discussion, exercises. Prerequisite: M.B.A. degree program student.

MGT 523 Managing People for Service Advantage. (3) once a year
Covers HRM practices that are conducive to building and maintaining internal customer equity and maximizing external customer service. Discussion, lecture, class exercises, cases. Prerequisite: M.B.A. degree program student.
MAT 599 International Management. (2–3)
Once a year
Studies international and cross-cultural influences on management processes and development of global leadership capabilities for experienced management professionals. Discussion, company analyses, case analyses, lecture, guest speakers. Prerequisite: M.B.A. degree program student.

MAT 561 Advanced Integrated Project. (2–3)
Once a year
Capstone project of the high-technology ASU M.B.A. Student teams develop business plans for new technology-based products. Online project. Prerequisite: M.B.A. degree program student.

MAT 570 Management Consulting. (3)
Once a year
Develops understanding of how internal and external consultants add value. Prerequisites: ability to use common business software, including Microsoft Office; familiarity with spreadsheets.

MAT 589 Strategic Management. (3–4)
Spring
Formulation of strategy and policy in the organization, emphasizing the integration of decisions in the functional areas. Prerequisite: M.B.A. degree program student.

MAT 591 Seminar. (1–12)
Selected semesters
Topics may include the following:
- Business Plan Competition. (3)
- Entrepreneurship. (3)
- Human Resource Management and Service Delivery. (3)
- Human Resources and High-Technology Management. (3)
- Organizational Change and Business Process Consulting. (3)

MAT 593 Applied Projects. (3)
Once a year
Cross-functional teams initiate (possibly implement) organizational change within a local firm. Lecture, discussion, experiential learning. Pre- or corequisite: all core courses in the M.B.A. program.

MAT 588 Special Topics. (3)
Selected semesters
Graduate special topics chosen from human resources, strategic management, and international management, including special topics in international management in Asia or Europe. Prerequisite: instructor approval.

MAT 791 Seminar: Doctoral Seminar in Management. (1–12)
Selected semesters
Short module seminars. Topics may include the following:
- Causal Modeling. (1)
- Change and Coping. (1)
- Cognition: Micro and Macro Perspectives. (1)
- Dysfunction in Workplace. (1)
- Economic Theories of the Firm. (1)
- Levels of Analysis. (1)
- Motivation and Attitudes. (1)
- Organizational Identity and Identification. (1)
- Organizational Learning and Organizational Identity. (1)
- Organizational Performance and Reward Systems. (1)
- Organizational Strategy and Culture. (1)
- Organizational Structure, Technology, and Information Systems. (1)
- Organizational Withdrawal. (1)
- Performance Appraisal. (1)
- Power and Organizational Change. (1)
- Selection. (1)
- Strategy Overview. (1)
- Teams, Groups, and Leadership. (1)
- The Craft of Research. (1)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

OPERATIONS MANAGEMENT (OPM)

OPM 450 Changing Business Processes. (3)
Fall, spring, summer
Describes and analyzes business processes. Generates and evaluates alternatives. Creates improvement and implementation plans. Prerequisite: completion of 100 hours including all business administration core requirements. Pre- or corequisite: FIN 461 or MAT 460 or MKT 460 or SCM 479 or any other recommended business integrative course.

OPM 540 Quality and Productivity Management. (3)
Once a year
Organizational factors influencing quality and productivity in the production of goods and services. Quality and productivity strategies, improvement programs, and measurement systems. Prerequisite: SCM 502 or instructor approval.

OPM 581 Management of Technology and Innovation. (3)
Once a year
Technology life cycles, technology forecasting, new product development processes, innovation teams, innovation best practices. Prerequisite: M.B.A. degree program student.

OPM 583 Project Management in Service Organizations. (2–3)
Once a year
Project management planning, leadership, and control in service organizations. Discussion, lecture, class exercises, cases. Prerequisite: M.B.A. degree program student.

OPM 585 Facilities Design and Management of Technology. (3)
Once a year
Decisions regarding management of facilities and technology for manufacturing and service firms. Facilities location, layout, process design, and selection.

OPM 586 High-Technology Project Management. (2–3)
Fall
Project management processes for high-technology organizations, including planning, scheduling, team development, and control. Prerequisite: M.B.A. degree program student.

OPM 587 Project Management. (3)
Once a year
Planning, scheduling, and controlling of projects in R & D, manufacturing, construction, and services. Project selection, financial considerations, and resource management. Prerequisite: QBA 502.

OPM 588 Strategic Project Management. (2–3)
Fall
Overview of strategic project management processes, project planning and control, project portfolio management, resource allocation, management of strategic project partners. Discussion, lecture, class exercises, cases. Prerequisite: M.B.A. degree program student.

OPM 591 Seminar. (1–12)
Once a year
Topics may include the following:
- High-Performance Management Processes. (3)
- Management of Technology. (3)
- Manufacturing Management in High Technology. (3)
- Manufacturing Strategy. (3)
- New Product and Process Development. (3)
- Technology/Project Management. (3)

OPM 593 Applied Projects. (3)
Once a year
Cross-functional teams initiate (possibly implement) organizational change within a local firm. Lecture, discussion, experiential learning. Pre- or corequisite: all core courses in the M.B.A. program.

OPM 791 Doctoral Seminars in Operations and Production Management. (1–12)
Selected semesters
Short module seminars. Topics may include the following:
- Management of Technology. (1)
- Manufacturing Strategy. (1)
- Operations Management. (1)
- Project Management. (1)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Department of Marketing

MARKETING (MKT)

MKT 411 Sales Management. (3)
Once a year
Applies management concepts to the administration of the sales operation. Prerequisite: MKT 302.
MKT 412 Promotion Management. (3) once a year
Integrates the promotional activities of the firm, including advertising, personal selling, public relations, and sales promotion. Prerequisite: MKT 302.

MKT 424 Retail Management. (3) selected semesters
Role of retailing in marketing. Problems and functions of retail managers within various retail institutions. Prerequisite: MKT 300.

MKT 430 Marketing for Service Industries. (3) once a year
Concepts and strategies for addressing distinctive marketing problems and opportunities in service industries. Current issues and trends in the service sector. Prerequisites: MKT 300, professional program business student.

MKT 434 Business-to-Business Marketing. (3) once a year
Strategies for marketing products and services to commercial, institutional, and governmental markets. Changing industry and market structures. Prerequisite: MKT 302 or instructor approval.

MKT 435 International Marketing. (3) once a year
Analyzes marketing strategies developed by international firms to enter foreign markets and to adapt to changing international environments. Prerequisites: MKT 302 (or instructor approval); professional program business student.

MKT 451 Marketing Research. (3) fall and spring
Integrated treatment of methods of market research and analysis of market factors affecting decisions in the organization. Prerequisites with a grade of "C" or higher: MKT 302; QBA 221.

MKT 460 Strategic Marketing. (3) fall and spring
Policy formulation and decision making by the marketing executive. Integrates marketing programs and considers contemporary marketing issues. Prerequisite: professional program business student. Prerequisites with a grade of "C" or higher: MKT 302, 304, 451.

MKT 494 Special Topics. (1–4) fall, spring, summer
Chosen from topics in the marketing and international marketing arenas to include seminars in international marketing in Europe and Asia. Topics may include the following:
 • Applied International Marketing

MKT 499 Individualized Instruction. (1–3) fall, spring, summer
Topics of special interest chosen by students and agreed to by the departments to do independent studies with a professor acting as a guide.

MKT 502 Marketing Management. (3) fall, spring, summer
Managing the marketing function; market and environmental analysis; marketing planning, strategy, and control concepts. Development and management of marketing programs. Prerequisite: ECN 502.

MKT 524 Services Marketing. (3) once a year
Strategies for marketing services emphasizing the distinctive challenges and approaches that make marketing of services different from marketing manufactured goods. Prerequisite: MKT 502 (or its equivalent).

MKT 563 Marketing Strategy. (3) selected semesters
Planning and control concepts and methods for developing and evaluating strategic policy from a marketing perspective. Prerequisite: MKT 502.

MKT 584 Internship. (3) fall, spring, summer
MKT 591 Seminar. (1–12) once a year
Offered in conjunction with the M.B.A. program (see M.B.A. program section). Topics may include the following:
 • Business-to-Business Marketing. (3)
 • Competitive Strategy for Services. (3)
 • Consumer Behavior and Market Strategy. (3)
 • Customer Satisfaction/Service Quality Measurement. (3)
 • International Marketing. (3)
 • Marketing in the Information Age. (3)
 • New Product and Service Development. (3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Department of Supply Chain Management

BUSINESS (BUS)

BUS 451 Business Research Methods. (3) selected semesters
Methods of collecting information pertinent to business problem solving, including design, collection, analysis, interpretation, and presentation of primary and secondary data.

BUS 502 Managerial Communication. (1–3) fall and spring
Analyzes various business problems, situations, and development of appropriate communication strategies. Prerequisite: MGT 502.

BUS 591 Seminar. (3) selected semesters
Selected managerial communication topics.

BUS 594 Study Conference or Workshop. (3) selected semesters

BUS 700 Research Methods. (3) selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

LEGAL AND ETHICAL STUDIES (LES)

LES 411 Real Estate Law. (3) once a year
Legal and ethical aspects of land ownerships, interests, transfer, finance development, and regulations of the real estate industry.

LES 532 Negotiation Agreements. (3) fall and spring
Studies legal and ethical components of business decisions; self-regulation and social responsibility as strategies. Prerequisites: ACC 503; FIN 502; MGT 502; MKT 502.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

REAL ESTATE (REA)

REA 401 Real Estate Appraisal. (3) once a year
Factors affecting the value of real estate. Theory and practice of appraising and preparation of the appraisal report. Appraisal techniques. Prerequisites: REA 300; professional program business student.

REA 441 Real Estate Land Development. (3) once a year
Neighborhood and city growth. Municipal planning and zoning. Development of residential, commercial, industrial, and special purpose properties. Prerequisites: REA 300; professional program business student.
GRADUATE PROGRAMS AND COURSES

REA 456 Real Estate Investments. (3)
Once a year
Analyzes investment decisions for various property types. Cash flow and rate of return analysis. Prerequisites: FIN 300; professional program business student.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

QUANTITATIVE BUSINESS ANALYSIS (QBA)
Department of Supply Chain Management

QBA 505 Management Science. (3)
Selected semesters
Quantitative approaches to decision making, including linear programming and simulation, with emphasis on business applications. Prerequisites: MAT 210; QBA 502.

QBA 508 Product and Service Innovation. (3)
Fall and spring
Develops strategies for innovation in products and services. Prerequisites: basic algebra; basic probability concepts; elementary knowledge of Windows.

QBA 550 Intermediate Decision Analysis. (3)
Selected semesters
Quantitative decision analysis methods for business decision making under uncertainty, including decision diagrams, subjective probabilities, and preference assessment. Prerequisites: MAT 210; QBA 502.

QBA 591 Seminar. (1–12)
Fall and spring

QBA 593 Applied Project. (1–12)
Selected semesters

QBA 599 Thesis. (1–12)
Selected semesters

QBA 791 Doctoral Seminars in Quantitative Business Analysis. (1–12)
Selected semesters

The Department of Supply Chain Management has adopted a modular approach to Ph.D. education. Topics may include the following:
- Chaos Theory. (1)
- Risk Analysis. (1)
- Strategic Decision Making. (1)
- Systems Dynamics. (1)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

SUPPLY CHAIN MANAGEMENT (SCM)
SCM 405 Urban Transportation. (3)
Selected semesters
Economic, social, political, and business aspects of passenger transportation. Public policy and government aid to urban transportation development. Prerequisite: upper-division standing or instructor approval.

SCM 432 Planning and Control Systems for Supply Chain Management. (3)
Fall and spring
Planning and control systems for product and service flows in supply chain: production planning, master scheduling, MRP, ERP, inventory management. Lab. Fee. Prerequisites: SCM 300; professional program business student. Pre- or corequisites: SCM 345, 355.

SCM 440 Quality Management and Measurement. (3)
Fall and spring
Quality management and measurement, relationships with suppliers and customers, quality awards, certifications, programs, tools for process improvement and cost analyses. Prerequisites: SCM 300; professional program business student majoring in Supply Chain Management.

SCM 455 Research and Negotiation. (3)
Fall and spring
Current philosophy, methods, techniques for conducting strategic and tactical supply chain research and negotiations. Includes supplier price and cost analysis. Prerequisite: professional program business student majoring in Supply Chain Management. Prerequisite with a grade of “C” or higher: SCM 355.

SCM 460 Carrier Management. (3)
Selected semesters

SCM 463 Global Supply Chain Management. (3)
Fall and spring
Supply chain activities in international business with special emphasis on management of transportation, global sourcing, customs issues, and facility location in a global environment.

SCM 479 Supply Chain Strategy. (3)
Fall and spring

SCM 480 Carrier Management. (3)
Fall and spring
Analyzes carrier economics, regulation, management, and rate-making practice; evaluates public policy issues related to carrier transportation. Prerequisite: both SCM 345 and upper-division standing or only instructor approval.

SCM 502 Operations and Supply Management. (3)
Fall and spring
Contemporary management issues, including environmental, project, and supply chain management; new product development; quality control; TQM. Prerequisite: M.B.A. degree program student.

SCM 511 Integrated Supply Chain Management. (3)
Once a year

Management of sourcing, operations, and logistics as an integrated process.

SCM 515 Decision Models for Supply Chain Management. (3)
Once a year

Decision modeling approaches for supply chain management such as optimization, simulation, and decision analysis. Emphasizes spreadsheet-oriented approaches.

SCM 521 Supply Management and Negotiation. (3)
Once a year

Selecting, developing, and executing appropriate sourcing strategies and processes.

SCM 532 Supply Chain Cost and Design Issues. (3)
Once a year

Strategic design and development of supply chains. Focus on cost-management tools applied to supply chain design and supplier management.

SCM 541 Logistics in the Supply Chain. (3)
Once a year

Critical issues for customer perception of supply chain performance, including inventory planning, transportation, warehousing, information technology, and integrated logistics service.

SCM 551 Operations Planning and Execution. (3)
Once a year

Managing the conversion of raw materials to finished goods, including scheduling, work-in-process inventory management, and postponement/customization.

SCM 591 Seminar. (1–12)
Fall and spring

Topics may include the following:
- Buyer/Supplier Relations. (3)
- Decision Models for Supply Chain Management. (3)
- E-commerce. (3)
- Global Supply Chain Management. (3)
- Operations Planning and Control. (3)
- Supply Chain Management Fundamentals. (3)
SCM 791 Doctoral Seminar. (1–12)
once a year
Topics may include the following:
• Complexity and Chaos Theory for Supply Chain Management. (3)
• Logistics Management. (3)
• Purchasing and Materials Management. (3)
• Supply Chain Management and Organizational Theories. (3)
• Uncertainty in Supply Chain Management. (3)
Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 48.

Business Administration
Master’s Degree

ASU West also offers a Master of Business Administration (M.B.A.) degree. For more information about the ASU West program, see the ASU West Catalog, call 602/543-4567, or access www.west.asu.edu on the Web.

Chemical Engineering
Master’s and Doctoral Programs

www.eas.asu.edu/~cme
480/965-3313
ECG 202

Subhash Mahajan, Chair
Professors: Mahajan, Raupp
Associate Professors: Beaudoin, Beckman, Burrows, Rivera, Sierks
Assistant Professors: Allen, Dillner, Razatos

The faculty in the Department of Chemical and Materials Engineering offer graduate programs leading to the M.S., Master of Science in Engineering, and the Ph.D. degrees in Chemical Engineering. Areas of research emphasis include biotechnology and biomaterials, chemical therapies for neurodegenerative diseases, adhesion in biological and inorganic systems, electronic materials processing, environmentally-benign manufacturing, process design and operations, water and air purification, surface and reaction engineering, and photocatalysis. Within the Engineering Science major, students may select materials science and engineering as the area of study (see “Engineering Science,” page 197, for program description).

The faculty also participate in offering the interdisciplinary program leading to the Doctor of Philosophy degree with a major in Science and Engineering of Materials (see “Science and Engineering of Materials,” page 312, for program description). A Graduate Student Handbook, detailing information on graduate studies in Chemical Engineering, is available to admitted students. Students should contact the department.

The faculty also participate in offering the Tri-University Master of Engineering degree program. See “Master of Engineering,” page 190, for program description.

Graduate Record Examination. Graduate Record Examination scores are required from all students.

MASTER OF SCIENCE

See “Master’s Degrees,” page 93, for general requirements.

Transition Program. Students applying for the program leading to a master’s degree with a major in Chemical Engineering, or in the area of study of materials science and engineering under the Engineering Science major, may have an undergraduate B.S. degree in a major field other than chemical engineering or materials science. The qualifications of transition students are reviewed by the department graduate committee, and a special program is designed for successful applicants. In general, applicants should have had, or should be prepared to take, calculus through differential equations and physics. Transition students are expected to complete the essential courses in their area of study from the undergraduate program to prepare themselves for the graduate courses. Other course work from the undergraduate program may be required depending upon the area of study selected by the student.

Transition students should contact the graduate coordinator for an evaluation of the undergraduate transcript.

Program of Study. All candidates for the Master of Science in Engineering or M.S. degree in Chemical Engineering, or in the area of study of materials science and engineering under the Engineering Science major, are required to complete an approved program of study consisting of the minimum required semester hours, including research report (M.S.E.) or thesis (M.S.). Special course requirements for the different areas of study are established by the faculty and are available from the departmental graduate coordinator. In addition to the course/thesis requirements, all full-time graduate students must successfully complete a seminar course during each semester of attendance; part-time students must enroll in a seminar course at least three times during the course of study. Candidates whose undergraduate degree was in a field other than chemical engineering or materials science may be required to complete more than 30 semester hours.

Thesis Requirements. A thesis or equivalent is required.

Final Examinations. A final oral examination is required in defense of the thesis or equivalent.

MASTER OF SCIENCE IN ENGINEERING

See “Master of Science in Engineering,” page 196, for information on the Master of Science in Engineering degree.
DOCTOR OF PHILOSOPHY

The Ph.D. degree in Chemical Engineering, or in the area of study of materials science and engineering under the Engineering Science major, is conferred upon evidence of excellence in research resulting in a scholarly dissertation that is a contribution to existing knowledge.

See “Doctor of Philosophy,” page 96, for general requirements.

Doctoral Program. Upon successful completion of the qualifying examination, a research supervisory committee is formed and the doctoral student is required to submit a research proposal. Following the acceptance of the research proposal, the student is given a comprehensive examination to determine initiative, originality, breadth, and high level of professional commitment to the problem selected for investigation. Upon successful completion of the comprehensive examination, the student applies for admission to candidacy.

Master’s Degree in Passing. Students who are enrolled in the Ph.D. degree program in Chemical Engineering, but who do not hold a previously earned master’s degree in chemical engineering, can obtain the M.S.E. degree (the “Master’s in Passing”) upon completion of course requirements, the Ph.D. qualifying examination, prospectus, and the comprehensive examination.

As this degree is only available to students who are enrolled as regular students in the Ph.D. program in Chemical Engineering, all of the above requirements (including course work) can be applied toward the Ph.D. requirements.

Foreign Language Requirements. Candidates in the program leading to the Ph.D. degree in Chemical Engineering, or in the area of study of materials science and engineering under the Engineering Science major, normally are not required to pass an examination showing reading competency of a foreign language. However, the supervisory committee may establish such a requirement in special cases depending upon the research interests of the candidate. If the foreign language is required, the student must successfully fulfill the requirement before taking the comprehensive examination.

Dissertation Requirements. A dissertation based on original work demonstrating creativity in research and scholarly proficiency in the subject area is required.

Final Examinations. A final oral examination in defense of the dissertation is required.

RESEARCH ACTIVITY

Biochemical Engineering. Biological colloids, bioadhesion, biofilms, biochips, protein engineering, enzyme kinetics, biomedical engineering, antibody-based therapeutics, neurodegenerative diseases, atomic force microscopy, protein-protein interactions, coagulation.

Chemical Process Engineering. Chemical process design fundamentals, optimization techniques and applications, process modeling, simulation, dynamics and control, and applied statistics.

Electronic Materials. Adsorption, catalysis, solid-state materials processing for control of properties, adhesion, surface cleaning, plasma etching, physical vapor deposition, polymer processing, photolithography, semiconductor materials processing, chemical vapor deposition, surface reactions, electrochemical reactions, optimization of electroplating processing, and surface analysis.

Environmental Analysis. Energy and environmental design considerations, purification of effluent streams, water reclamation and purification, sea water desalination, CMP effluent recovery, analysis of air and water pollution, modeling of pollution systems, and recycling for pollution control.

Materials Science and Engineering. Semiconductor processing and characterization, polymeric and ceramic composites, materials for high critical temperature superconductor applications, ferritic thin films for capacitor and memory applications, high temperature materials for space applications, mechanical behavior of high-strength Al-Li alloys, environmentally influenced mechanical effects, and microbiologically influenced corrosion reactions.

In addition to the strong core programs, the department emphasizes multidisciplinary research at the leading edge of science, where departmental strengths interface with materials and solid-state research, life sciences, bioengineering, atmospheric sciences, and environmental studies.

Faculty in chemical engineering are also involved in numerous research centers and programs across campus, including the Center for Solid State Science, the Molecular and Cellular Biology master’s degree program, and the Atmospheric Sciences certificate program.

CHEMICAL ENGINEERING (CHE)

CHE 458 Semiconductor Material Processing. (3) selected semesters
Introduces the processing and characterization of electronic materials for semiconductor applications. Prerequisites: CHE 333, 342.

CHE 475 Biochemical Engineering. (3) selected semesters
Applies chemical engineering methods, mass transfer, thermodynamics, and transport phenomena to industrial biotechnology. Prerequisite: instructor approval.

CHE 476 Bioreaction Engineering. (3) selected semesters
Principles of analysis and design of reactors for processing with cells and other biologically active materials; applications of reaction engineering in biotechnology. Prerequisite: instructor approval.

CHE 477 Bioseparation Processes. (3) selected semesters
Principles of separation of biologically active chemicals; the application, scale-up, and design of separation processes in biotechnology. Prerequisite: instructor approval.

CHE 501 Introduction to Transport Phenomena. (3) fall and spring
Transport phenomena, with emphasis on fluid systems. Prerequisite: transition student with instructor approval.
CHE 502 Introduction to Energy Transport. (3)
fall and spring
Continuation of transport principles, with emphasis on energy transport in stationary and fluid systems. Prerequisite: transition student with instructor approval.

CHE 503 Introduction to Mass Transport. (3)
fall and spring
Applies transport phenomena to mass transfer. Design of mass transfer equipment, including staged processes. Prerequisite: transition student with instructor approval.

CHE 504 Introduction to Chemical Thermodynamics. (3)
fall and spring
Energy relations and equilibrium conversions based on chemical potentials and phase equilibria. Prerequisite: transition student with instructor approval.

CHE 505 Introduction to Chemical Reactor Design. (3)
fall and spring
Applies kinetics to chemical reactor design. Prerequisite: transition student with instructor approval.

CHE 527 Advanced Applied Mathematical Analysis in Chemical Engineering. (3)
fell
Formulation and solution of complex mathematical relationships resulting from the description of physical problems in mass, energy, and momentum transfer and chemical kinetics.

CHE 528 Process Optimization Techniques. (3)
spring
Method for optimizing engineering processes. Experimental design and analysis; linear and nonlinear regression methods; classical, search, and dynamic programming algorithms.

CHE 533 Transport Processes I. (3)
fall
Unified treatment of momentum, heat, and mass transfer from molecular theory, and continuum points of view. Continuum equations of microscopic and macroscopic systems and multicomponent and multiphase systems. Cross-listed as BME 533. Credit is allowed for only BME 533 or CHE 533.

CHE 534 Transport Processes II. (3)
spring
Continuation of BME 533 or CHE 533, emphasizing mass transfer. Cross-listed as BME 534. Credit is allowed for only BME 534 or CHE 534. Prerequisite: BME 533 or CHE 533.

CHE 536 Convective Mass Transfer. (3)
selected semesters
Turbulent flow for multicomponent systems, including chemical reactions with applications in separations and air pollution. Prerequisite: CHE 533 or MAE 571.

CHE 543 Thermodynamics of Chemical Systems. (3)
fall
Classical and statistical thermodynamics of nonideal physicochemical systems and processes; prediction of optimum operating conditions. Cross-listed as BME 543. Credit is allowed for only BME 543 or CHE 543.

CHE 544 Chemical Reactor Engineering. (3)
spring
Reaction rates, thermodynamics, and transport principles applied to the design and operation of chemical reactors. Cross-listed as BME 544. Credit is allowed for only BME 544 or CHE 544. Prerequisite: BME 543 or CHE 543.

CHE 548 Topics in Catalysis. (3)
selected semesters
Engineering catalysis, emphasizing adsorption, kinetics, characterization, diffusional considerations, and reactor design. Other topics include mechanisms, surface analyses, and electronic structure.

CHE 552 Industrial Water Quality Engineering. (3)
selected semesters
Water pollutants, quality criteria and control, chemical treatment processing, and system design. Case studies. Prerequisite: CHE 331 (or its equivalent).

CHE 553 Air Quality Control. (3)
selected semesters
Air pollutant origins, effects, and control. Physical and chemical processes, including dispersion, combustion, sampling, control equipment design, and special topics. Prerequisite: CHE 331 (or its equivalent).

CHE 554 New Energy Technology. (3)
selected semesters

CHE 556 Separation Processes. (3)
selected semesters
Topics in binary/multicomponent separation, rate governed and equilibrium processes, mass transfer criteria, energy requirements, separating agents and devices, and staged operations.

CHE 558 Electronic Materials. (3)
selected semesters
Processing and characterization of electronic materials for semiconductor-type uses. Thermodynamics and transport phenomena, phase equilibria and structure, mass transfer, and diffusion and thermal properties.

CHE 561 Advanced Process Control. (3)
spring
Dynamic process representation, linear optimal control, optimal state reconstruction, and parameter and state estimation techniques for continuous and discrete time systems.

CHE 563 Chemical Engineering Design. (3)
selected semesters
Computational methods; the design of chemical plants and processes.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 46.