GRADUATE PROGRAMS AND COURSES

Mechanical Engineering
Master’s and Doctoral Programs

www.eas.asu.edu/~mae
480/965-3291
ECG 346

Robert E. Peck, Chair

Professors: Boyer, Davidson, Fernando, Jankowski, Krajcinovic, Peck, Roy, Shah, Sieradzki, Squires, Tseng, Yao

Associate Professors: Chen, Kuo, McNeill, Phelan, Van Schilfgaarde

Assistant Professors: Calhoun, Peralta, Sugar

The faculty in the Department of Mechanical and Aerospace Engineering offer graduate programs leading to the degrees of M.S., M.S.E., and Ph.D. in Mechanical Engineering. A number of areas of study may be pursued, including design and manufacturing, system dynamics and control, engineering mechanics, and thermal-fluid sciences.

The faculty also offer graduate degree programs in Aerospace Engineering.

All of the graduate programs stress a sound foundation in fundamentals leading to a specialized area of study.

Graduate studies in one of the specialized fields of mechanical engineering prepare students for a professional career in industry, government, or academic institutions.

Graduate Record Examination. All applicants are required to take the Graduate Record Examination; the subject test in engineering is highly recommended but not required.

MASTER OF SCIENCE

See “Master’s Degrees,” page 94, for general requirements.

MASTER OF SCIENCE IN ENGINEERING

See “Master of Science in Engineering,” page 197, for information on the Master of Science in Engineering degree.

MASTER OF ENGINEERING

The faculty also participate in offering the tri-university Master of Engineering program. See “Master of Engineering,” page 192.

DOCTOR OF PHILOSOPHY

The Ph.D. degree is conferred upon evidence of excellence in research leading to a scholarly dissertation that is an original contribution to knowledge in the field of mechanical engineering. See “Doctoral Dissertations,” page 96, for general requirements.

Program of Study. The program of study must be established no later than the first semester after successfully completing the qualifying examination.

Qualifying Criteria. The purposes of the qualifying criteria are to assess if the student is qualified to continue in the doctoral program and to detect deficiencies in the student’s background that can be corrected by appropriate course work and individual study. Within the first year of graduate studies at ASU, a graduate student pursuing a Ph.D. program of study in Mechanical Engineering must complete three 500-level core courses, preferably in the major area of interest, and one 500-level mathematics course, both with an average GPA of 3.25 or higher. Specific qualifying course requirements for each major area are available from the department.

Foreign Language Requirements. None.

Comprehensive Examinations. Written and oral comprehensive examinations are required. The examinations are administered by the program committee.

Dissertation Requirements. A dissertation based on original work demonstrating creativity in research and scholarly proficiency in the subject area is required.

Final Examination. A final oral examination in defense of the dissertation is required.

RESEARCH ACTIVITY

The department offers a broad range of theoretical and experimental research in mechanical and thermal-fluid systems. In particular, research is done in combustion and emission control; computational fluid dynamics; corrosion; cryogenics; crystallography; damage and fracture mechanics; design automation; electronic cooling; energy conversion and management; engineering informatics; environmental and geophysical fluid dynamics; failure analysis and reliability; heat transfer in complex flows; geometric modeling; hydrodynamic stability; intelligent control; knowledge-based design; mechatronics; micro-/nanoscale transport processes; multidisciplinary optimization; nanomechanics of materials; non-Newtonian fluid mechanics; noise control; pollution monitoring and transport; precision materials processing; robotics; rotor-bearing system design; smart structures; superconductivity; thin film growth; turbulence modeling; and two-phase flow modeling and experiments.

Multidisciplinary research areas include micro-nano systems; modeling and process simulation; energy and environment; and intelligent and adaptive systems. Modern laboratory and computational facilities are available to assist in the development of research skills. For more information, access the department’s Web site at eas.asu.edu/~mae.

MECHANICAL AND AEROSPACE ENGINEERING (MAE)

MAE 402 Introduction to Continuum Mechanics. (3) once a year
Applies the principles of continuum mechanics to such fields as flow-in porous media, biomechanics, electromagnetic continua, and magneto-fluid mechanics. Prerequisites: ECE 313; MAE 361 (or 371); MAT 242 (or 342).
MAE 404 Finite Elements in Engineering. (3)
Introduces ideas and methodology of finite element analysis. Applications to solid mechanics, heat transfer, fluid mechanics, and vibrations. Prerequisites: ECE 313; MAT 242 (or 342).

MAE 406 CAD/CAM Applications in MAE. (4)
Solution of engineering problems with the aid of state-of-the-art software tools in solid modeling, engineering analysis, and manufacturing; selection of modeling parameters; reliability tests on software. 3 hours lecture, 3 hours lab. Prerequisites: ECE 384; MAE 422, 441 (or 444).

MAE 415 Vibration Analysis. (4)
Free and forced response of single and multiple degree of freedom systems, continuous systems; applications in mechanical and aerospace systems numerical methods. Lecture, lab. Prerequisites: ECE 212; MAE 319, 422 (or 425); MAT 242 (or 342).

MAE 417 Control System Design. (3)
Tools and methods of control system design and compensation, including simulation, response optimization, frequency domain techniques, state variable feedback, and sensitivity analysis. Introduces nonlinear and discrete time systems. Prerequisite: MAE 317.

MAE 433 Air Conditioning and Refrigeration. (3)
Air conditioning processes; environmental control; heating and cooling loads; psychrometry; refrigeration cycles. Prerequisite: MAE 388 or MET 432 or instructor approval.

MAE 434 Internal Combustion Engines. (3)

MAE 435 Turbomachinery. (3)
Design and performance of turbomachines, including steam, gas and hydraulic turbines, centrifugal pumps, compressors, fans, and blowers. Pre- or corequisite: MAE 361 or 371.

MAE 436 Combustion. (3)
Thermochemical and reaction rate processes; combustion of gaseous and condensed-phase fuels. Applications to propulsion and heating systems. Pollutant formation. Prerequisite: MAE 388.

MAE 442 Mechanical Systems Design. (4)
Applies design principles and techniques to the synthesis, modeling, and optimization of mechanical, electromechanical, and hydraulic systems. Lecture, lab. Prerequisites: MAE 317, 441 (or 444).

MAE 446 Thermal Systems Design. (3)
Applies engineering principles and techniques to the modeling and analysis of thermal systems and components. Presents and demonstrates optimization techniques and their use. Prerequisite: ECE 300; MAE 388.

MAE 447 Robotics and its Influence on Design. (3)
Robot applications, configurations, singular positions, and work space; modes of control; vision; programming exercises; design of parts for assembly. Prerequisite: MAE 317.

MAE 455 Polymers and Composites. (3)
Relationship between chemistry, structure, and properties of engineering polymers. Design, properties, and behavior of fiber composite systems. Cross-listed as MSE 470. Credit is allowed for only MAE 455 or MSE 470. Prerequisites: ECE 313, 350.

MAE 460 Gas Dynamics. (3)
Compressible flow at subsonic and supersonic speeds; duct flow; normal and oblique shocks, perturbation theory, and wind tunnel design. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 462 Space Vehicle Dynamics and Control. (3)
Attitude dynamics and control, launch vehicles, orbital mechanics, orbital transfer/rendezvous, space mission design, space structures, spacecraft control systems design. Prerequisite: MAE 317.

MAE 463 Propulsion. (3)
Fundamentals of gas-turbine engines and design of components. Principles and design of rocket propulsion and alternative devices. Lecture, design projects. Prerequisites: ECE 384; MAE 382 (or 460).

MAE 465 Rocket Propulsion. (3)
Rocket flight performance; nozzle design; combustion of liquid and solid propellants; component design; advanced propulsion systems; interplanetary missions; testing. Prerequisite: MAE 382 or 460.

MAE 466 Rotary Wing Aerodynamics and Performance. (3)
Introduces helicopter and propeller analysis techniques. Momentum, blade-element, and vortex methods. Hover and forward flight. Ground effect, autorotation, and compressibility effects. Prerequisites: both ECE 384 and MAE 361 or only instructor approval.

MAE 467 Aircraft Performance. (3)

MAE 469 Projects in Astronautics or Aeronautics. (3)
Various multidisciplinary team projects available each semester. Projects include design of high-speed rotocraft autonomous vehicles, liquid-fueled rockets, microaerial vehicles, satellites. Prerequisite: instructor approval.

MAE 471 Computational Fluid Dynamics. (3)
Numerical solutions for selected problems in fluid mechanics. Prerequisites: ECE 384; MAE 361 (or 371).

MAE 504 Laser Diagnostics. (3)

MAE 505 Perturbation Methods. (3)
Selected semesters
Nonlinear oscillations, strained coordinates, renormalization, multiple scales, boundary layers, matched asymptotic expansions, turning point problems, and WKBJ method. Cross-listed as MAT 505. Credit is allowed for only MAE 505 or MAT 505.

MAE 506 Advanced System Modeling, Dynamics, and Control. (3)
Lumped-parameter modeling of physical systems with examples. State variable representations and dynamic response. Introduces modern control. Prerequisite: ASE 582 or MAT 442.

MAE 507 Optimal Control. (3)
Optimal control of systems. Calculus of variations, dynamic programming, linear quadratic regulator, numerical methods, and Pontryagin’s principle. Cross-listed as EEE 587. Credit is allowed for only EEE 587 or MAE 507. Prerequisite: EEE 482 or MAE 506.

MAE 509 Robust Multivariable Control. (3)
Characterization of uncertainty in feedback systems, robustness analysis, synthesis techniques, multivariable Nyquist criteria, computer-aided analysis and design. Prerequisites: MAE 417, 506.

MAE 510 Dynamics and Vibrations. (3)
Lagrange’s and Hamilton’s equations, rigid body dynamics, gyrostrophic motion, and small oscillation theory.

MAE 511 Acoustics. (3)
Principles underlying the generation, transmission, and reception of acoustic waves. Applications to noise control, architectural acoustics, random vibrations, and acoustic fatigue.
MAE 512 Random Vibrations. (3)
Spring
Reviews probability theory, random processes, stationarity, power spectrum, white noise process, random response of single and multiple DOF systems, and Markov processes simulation. Prerequisite: MAE 510 or instructor approval.

MAE 515 Structural Dynamics. (3)
Spring
Free vibration and forced response of discrete and continuous systems, exact and approximate methods of solution, finite element modeling, and computational techniques. Prerequisite: MAE 510 or instructor approval.

MAE 518 Dynamics of Rotor-Bearing Systems. (3)
Spring

MAE 520 Solid Mechanics. (3)
Fall
Introduces tensors: kinematics, kinetics, and constitutive assumptions leading to elastic, plastic, and viscoelastic behavior. Applications.

MAE 521 Structural Optimization. (3)
Selected semesters
Linear and nonlinear programming. Problem formulation. Constrained and unconstrained optimization. Sensitivity analysis. Approximate techniques. FEM-based optimal design of mechanical and aerospace structures. Cross-listed as CEE 533. Credit is allowed for only CEE 533 or MAE 521. Prerequisite: instructor approval.

MAE 523 Theory of Plates and Shells. (3)
Fall
Linear and nonlinear theories of plates. Membrane and bending theories of shells. Shells of revolution. Prerequisite: MAE 520.

MAE 524 Theory of Elasticity. (3)
Spring
Elastic behavior in two and three dimensions. Airy stress functions and displacement potentials. Elements of fracture. Prerequisite: MAE 520.

MAE 527 Finite Element Methods in Engineering Science. (3)
Fall
Discretization, interpolation, elemental matrices, assembly, and computer implementation. Application to solid and fluid mechanics, heat transfer, and time-dependent problems. Prerequisite: MAE 520.

MAE 536 Combustion. (3)
Selected semesters

MAE 540 Advances in Engineering Design Theory. (3)
Fall
Survey of research in engineering design process, artifact and design, knowledge, formal and informal logic, heuristic and numerical searches, theory of structure and complexity. Prerequisite: graduate standing.

MAE 541 CAD Tools for Engineers. (3)
Fall
Elements of computer techniques required to develop CAD software. Data structures, including lists, trees, and graphs. Computer graphics, including 2- and 3-dimensional algorithms and user interface techniques.

MAE 544 Mechanical Design and Failure Prevention. (3)
Fall
Modes of mechanical failure; applies principles of elasticity and plasticity in multiaxial state of stress to design synthesis; failure theories; fatigue; creep; impact. Prerequisite: MAE 443.

MAE 546 CAD/CAM Applications in MAE. (4)
Once a year
Solution of engineering problems with the aid of state-of-the-art software tools in solid modeling, engineering analysis, and manufacturing; selection of modeling parameters; reliability tests on software. Open only to students without previous credit for MAE 406. 3 hours lecture, 3 hours lab. Prerequisites: ECE 384; MAE 422, 441 (or 444).

MAE 547 Mechanical Design and Control of Robots. (3)
Selected semesters
Homogeneous transformations, 3-dimensional kinematics, geometry of motion, forward and inverse kinematics, workspace and motion trajectories, dynamics, control, and static forces.

MAE 548 Mechanism Synthesis and Analysis. (3)
Spring
Algebraic and graphical methods for exact and approximate synthesis of cam, gear, and linkage mechanisms; design optimization; methods of planar motion analysis; characteristics of plane motion; spatial kinematics.

MAE 557 Mechanics of Composite Materials. (3)
Spring
Analyzes composite materials and applications. Micromechanical and macromechanical behavior. Classical lamination theory developed with investigation of bending-extension coupling.

MAE 560 Propulsion Systems. (3)
Selected semesters
Design of air-breathing gas turbine engines for aircraft propulsion; mission analysis; cycle analysis; engine sizing; component design.

MAE 561 Computational Fluid Dynamics. (3)
Spring
Finite-difference and finite-volume techniques for solving the subsonic, transonic, and supersonic flow equations. Method of characteristics. Numerical grid-generation techniques. Prerequisite: MAE 571 or instructor approval.

MAE 563 Unsteady Aerodynamics. (3)
Spring
Unsteady incompressible and compressible flow. Wings and bodies in oscillatory and transient motions. Kernel function approach and panel methods. Aeroelastic applications. Prerequisite: MAE 460 or 461.

MAE 564 Advanced Aerodynamics. (3)
Fall

MAE 566 Rotary-Wing Aerodynamics. (3)
Fall
Introduces helicopter and propeller analysis techniques. Momentum, blade-element, and vortex methods. Hover and forward flight. Ground effect, autorotation, and compressibility effects. Prerequisite: MAE 361.

MAE 571 Fluid Mechanics. (3)
Fall
Basic kinematic, dynamic, and thermodynamic equations of the fluid continuum and their application to basic fluid models.

MAE 572 Inviscid Fluid Flow. (3)
Spring
Mechanics of fluids for flows in which the effects of viscosity may be ignored. Potential flow theory, waves, and inviscid compressible flows. Prerequisite: MAE 571.

MAE 573 Viscous Fluid Flow. (3)
Fall
Mechanics of fluids for flows in which the effects of viscosity are significant. Exact and approximate solutions of the Navier-Stokes system, laminar flow at low and high Reynolds number. Prerequisite: MAE 571.

MAE 575 Turbulent Shear Flows. (3)
Fall
Homogeneous, isotropic, and wall turbulence. Experimental results. Introduces turbulent-flow calculations. Prerequisite: MAE 571.

MAE 577 Turbulent Flow Modeling. (3)
Spring
Reynolds equations and their closure. Modeling of simple and complex turbulent flows, calculations of internal and external flows, and application to engineering problems. Prerequisite: MAE 571.

MAE 581 Thermodynamics. (3)
Fall
Basic concepts and laws of classical equilibrium thermodynamics; applications to engineering systems. Introduces statistical thermodynamics.
MAE 582 Statistical Thermodynamics. (3)

MAE 585 Conduction Heat Transfer. (3)
Basic equations and concepts of conduction heat transfer. Mathematical formulation and solution (analytical and numerical) of steady and unsteady, one- and multidimensional heat conduction and phase change problems. Prerequisites: ECE 384; MAE 388.

MAE 586 Convection Heat Transfer. (3)
Basic concepts and governing equations. Analyzes laminar and turbulent heat transfer for internal and external flows. Natural and mixed convection. Prerequisite: MAE 388.

MAE 587 Radiation Heat Transfer. (3)
Advanced concepts and solution methodologies for radiation heat transfer, including exchange of thermal radiation between surfaces, radiation in absorbing, emitting, and scattering media and radiation combined with conduction and convection. Prerequisite: MAE 388.

MAE 588 Two-Phase Flows and Boiling Heat Transfer. (3)
Pool and flow boiling heat transfer, condensation heat transfer, various models of vapor-liquid mixture flows, gas-solid mixture flows, and experimental measurement techniques.

MAE 589 Heat Transfer. (3)
Basic concepts; physical and mathematical models for heat transfer. Applications to conductive, convective, radiative, and combined mode heat transfer. Prerequisite: MAE 388.

MAE 594 Graduate Research Conference. (1)
Topics in contemporary research. Required every semester of all departmental graduate students registered for 9 or more semester hours. Not for degree credit.

MAE 598 Special Topics. (1–4)
Special topics courses, including the following, which are regularly offered, are open to qualified students. Topics may include the following:
- Advanced Spacecraft Control. (1–3)
- Aeroelasticity. (1–3)
- Aerospace Vehicle Guidance and Control. (1–3)
- Boundary Layer Stability. (1–3)
- Hydrodynamic Stability. (1–3)
- Plasticity. (1–3)
- Polymers and Composites. (1–3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.
GRADUATE PROGRAMS AND COURSES

studies are by nature interdisciplinary, students in the certificate program receive interdisciplinary training. Besides the course work and examinations required in their major field, students take six to nine semester hours outside their discipline and receive training in a medieval vernacular language or a modern European language.

The core of the program has two components: (1) Latin, the international language for both the Middle Ages and Renaissance, and (2) paleography, the study of the physical medium through which Latin and other languages were transmitted.

The certificate program prepares students for advanced study or for academic positions by augmenting their skills and knowledge, thereby making them more equipped to handle the demands of their fields. For more information, contact the Arizona Center for Medieval and Renaissance Studies.

COURSES

For course information, contact the Arizona Center for Medieval and Renaissance Studies.

Microbiology

Master's and Doctoral Programs

For course information, contact the Arizona Center for Medieval and Renaissance Studies.

Edward A. Birge, Chair

Professors: Burke, Jacobs, Misra, Mossman, Schmidt

Associate Professors: Birge, Chang, Garcia-Pichel, Hoffman, Hogue, Stout

Effective July 1, 2003, the Departments of Biology, Microbiology, and Plant Biology merge to become the School of Life Sciences.

The Microbiology faculty in the School of Life Sciences offer programs leading to the M.S. and the Ph.D. degrees in Microbiology.

The faculty also participate in the program leading to the Master of Natural Science degree when one of the concentrations is microbiology (see “Natural Science,” page 281).

The Graduate Record Examination (GRE) is required for all applicants. Three letters of recommendation and a statement of personal goals must be submitted for admission to the graduate programs. Applicants are expected to have completed the requirements for an undergraduate major in Biology, Chemistry, or Microbiology or have an adequate background in related courses in biology, chemistry, mathematics, physics, and plant biology. Applicants without this background may be asked to take the GRE subject test. Applications are accepted throughout the year. To be considered for assistantships and fellowships, completed applications must be received by February 15 for the fall semester and by October 15 for the spring semester.

The graduate programs are designed to prepare students for careers in teaching and in research on various aspects of microbiology in educational institutions, industry, or government agencies. To ensure proper course selection, new students must have the department’s approval for all course registrations.

MASTER OF SCIENCE

See “Master’s Degrees,” page 94, for general requirements.

Program of Study. A minimum of 30 semester hours of graduate credit are required, of which at least six hours must be thesis and research credit. The program is planned by the student in consultation with the supervisory committee.

Foreign Language Requirements. None.

Comprehensive Examination. Students are expected to achieve, through 18 semester hours of course work, a fundamental understanding of the following subdisciplines: bacterial genetics, immunology, molecular biology, physiology and metabolism, and virology. Alternatively, the student may demonstrate this fundamental understanding through the combination of a comprehensive examination, prepared by the student’s supervisory committee, and 12 semester hours of formal course work.

Thesis Requirements. A thesis is required.

Final Examination. A final oral examination covering the thesis and related subject matter is required.

DOCTOR OF PHILOSOPHY

See “Doctor of Philosophy,” page 96, for general requirements.

Program of Study. At least 60 semester hours of graduate credit, in addition to 24 hours of dissertation and research, are required; a minimum of 18 semester hours of this total is in formal course work. The program is planned in consultation with the supervisory committee.

Foreign Language Requirements. None.

Comprehensive Examinations. Written and oral comprehensive examinations are required.

Dissertation Requirements. A dissertation based on original work of high quality, demonstrating proficiency in the student’s area of interest, is required. (See “Doctoral Dissertations,” page 96.)

Final Examination. A final oral examination in defense of the dissertation is required.

MICROBIOLOGY (MIC)

MIC 420 Immunology: Molecular and Cellular Foundations. (3) Fall

Molecular and cellular foundations of immunology. Antibody/antigen interactions, cellular response, cytokines, immunogenetics, immunoregulation, autoimmunity, psychoneuroimmunology research/medical
perspectives. Prerequisites: both CHM 231 (or 331) and MIC 205 (or 220) or only instructor approval.

MIC 421 Experimental Immunology. (2)
fall and spring
Introduces the basic techniques, methods, and assays used in immunology. 6 hours lab. Fee. Prerequisites: a combination of CHM 231 and 331 and MIC 302 or only instructor approval.

MIC 425 Advanced Immunology. (3)
selected semesters
Survey of recent advances in immunology, including lymphocyte membranes, lymphokines/biochemistry, molecular genetics, theoretical immunology, immunoregulation, neuroimmunology, and immunologic diseases. Prerequisite: MIC 420 or instructor approval.

MIC 441 Bacterial Genetics. (3)
spring
Survey of genetic exchange and regulatory processes in bacteria and their viruses. Bacteria and viruses as tools in genetic engineering. Prerequisites: both BIO 340 and MIC 205 (or 220) or only instructor approval.

MIC 442 Bacterial Genetics Laboratory. (1)
fall
Techniques of mutagenesis, mapping, and strain and genetic library construction. 4 hours lab. Prerequisites: MIC 206, 302. Pre-or corequisite: MIC 441.

MIC 445 Techniques in Molecular Biology/Genetics. (2)
fall and spring
Molecular genetic principles: plasmid construction, purification, and characterization; PCR; mutageneses; hybridization and sequence analysis; protein quantitation; immunologic detection and electrophoresis. Cross-listed as MBB 445. Credit is allowed for only MBB 445 or MIC 445. Prerequisites: both BIO 340 and MIC 302 or only instructor approval.

MIC 446 Techniques in Molecular Biology/Genetics Lab. (2)
fall and spring
Molecular genetic techniques; plasmid construction, purification, and characterization; PCR; mutageneses; hybridization and sequence analysis; protein quantitation; immunologic detection and electrophoresis. Cross-listed as MBB 446. Credit is allowed for only MBB 446 or MIC 446. Pre- or corequisite: MBB 445 or MIC 445.

MIC 461 Geomicrobiology. (3)
spring
Past and present interactions among microbial life, geological materials, and biogeochemical cycles involving carbon, sulfur, phosphate, nitrogen, and metals. Cross-listed as GLG 461. Credit is allowed for only GLG 461 or MIC 461. Prerequisites: introductory courses in chemistry and microbiology (or geological sciences); instructor approval.

MIC 470 Bacterial Diversity and Systematics. (4)
selected semesters
Biology, classification, and enrichment culture of the nonpathogenic bacteria. 2 hours lecture, 6 hours lab. Fee. Prerequisite: MIC 302.

MIC 484 Internship. (1–12)
fall, spring, summer
Topics may include the following:
• Service Learning Internship. (3) Fee.

MIC 485 General Virology. (3)
fall
Fundamental nature of viruses, their replication, pathogenesis, and ecology. Prerequisites: both BIO 340 and CHM 331 or only instructor approval.

MIC 486 General Virology Laboratory. (2)
selected semesters
Fundamentals of virus detection, isolation and assay; propagation of virus in mammalian cell culture; recombinant virus and vector construction. 6 hours lab. Prerequisite: MIC 302. Pre- or corequisite: MIC 485.

MIC 527 Neuroimmunology. (3)
selected semesters
Studies the mind's influence on immunity and the immune system's influence on the mind, neuroimmunologic diseases, and the neuroimmunological circuitry involved. Seminar. Prerequisite: MIC 420 or instructor approval.

MIC 581 Molecular Mechanism of Pathogenesis. (3)
selected semesters
Pathogenic mechanisms and host responses in viral and/or bacterial diseases. Prerequisites: both MIC 381 and 420 or only instructor approval.

MIC 585 Molecular Virology. (3)
fall
Selected topics concerning molecular aspects of eukaryotic virus replication and pathogenesis. Prerequisite: instructor approval.

MIC 591 Seminar. (1–12)
fall and spring
Topics may include the following:
• Advanced Bacterial Studies
• Bacterial Ecology. (1–3)
• Current Research in Microbiology. (1–3)
• Enzymology. (1–3)
• Genetic Engineering. (1–3)
• Genetics. (1–3)
• Immunology. (1–3)
• Molecular Virology. (1–3)
• Neuroimmunology. (1–3)
• Pathogenic Bacteriology. (1–3)

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Kristine Csavina, a doctoral student in bioengineering, attaches electrodes to a student as part of an experiment that evaluates balance changes in the aging process. Tim Trumble photo
Molecular and Cellular Biology
Interdisciplinary Master’s and Doctoral Programs

www.asu.edu/mcb
480/965-0743
LSE 411

Robert W. McGaughey, Director

Anthropology
Professor: Williams

Bioengineering
Associate Professor: Massia
Assistant Professor: Panitch
Research Professor: Brophy

Chemical and Materials Engineering
Associate Professor: Sierks
Assistant Professor: Razatos

Chemistry and Biochemistry
Professors: Allen, Blankenship, Gust, Lohr, A. Moore, T. Moore, Rose, Shock, Skibo, Woodbury
Assistant Professors: Francisco, Wachter
Senior Research Professionals: Brune, Nieman

Kinesiology
Professor: Matt

Life Sciences
Professors: Capco, Chandler, Dowling, Elser, Frasch, Harrison, Hazel, Hooper, Jacobs, McGaughey, Misra, Satterlie, Schmidt, Trelease, Vermaas, Webber
Associate Professors: Birge, Chang, Day, Garcia-Pichel, Goldstein, Hoffman, Hogue, Orchinik, Roberson, Stout, Stutz
Assistant Professors: Kumar, Newfeld, Rhoads, Wilson-Rawls
Research Professors: Davidson, Lyubchenko, Pfeiler
Senior Research Scientist: Lobrutto
Associate Research Scientist: Bingham
Assistant Research Professional: Joshi

Physics and Astronomy
Professor: Lindsay

Psychology
Associate Professor: Castaneda
Assistant Professor: Conrad

The interdisciplinary M.S. and Ph.D. degrees in Molecular and Cellular Biology are administered by the Interdisciplinary Committee on Molecular and Cellular Biology. The participating faculty are drawn primarily from the Department of Chemistry and Biochemistry and the School of Life Sciences, with additional faculty from the Departments of Anthropology, Bioengineering, Chemical and Materials Engineering, Exercise Science, Physics and Astronomy, and Psychology. One striking aspect of studies in this broad area of biological science is the interdisciplinary nature of the field. Similar approaches and techniques are used for studies of biological systems whether they are viral, bacterial, plant, or animal.

The graduate degrees offered by the faculty through this program prepare students for careers that span traditional disciplinary boundaries. The broad-based training provides the necessary skills for professional careers in academic institutions, governmental institutions, and industry, particularly those related to health and chemical sciences.

Graduate Record Examination. All applicants are required to take the Graduate Record Examination (GRE). Submission of scores on the verbal, quantitative, and analytical sections of the GRE is required for admission to the M.S. and Ph.D. degree programs. The subject test in the sciences is highly recommended.

TOEFL and SPEAK Test. Students whose native language is not English are required to take the Test of English as a Foreign Language (TOEFL). A TOEFL score of 630 (paper) or 267 (computer) is required for admission to the MCB program. Students whose native language is not English must pass the Speaking Proficiency English Assessment Kit (SPEAK) test with a score of at least 55 if they wish to be considered for teaching assistantship support.

MASTER OF SCIENCE

See “Master’s Degrees,” page 94, for general requirements.

Program of Study. Thirty semester hours are required. A minimum of 10 designated semester hours of MCB courses and six hours of Research and Thesis are required. The remaining courses are selected by the student in consultation with the supervisory committee.

Thesis Requirements. A written thesis based on original research is required.

Final Examination. A final oral examination in defense of the thesis is required.

DOCTOR OF PHILOSOPHY

See “Doctor of Philosophy,” page 96, for general requirements.

Program of Study. Eighty-four semester hours are required. A minimum of 12 designated semester hours of MCB courses, six semester hours of elective course work, and 24 semester hours of Research and Dissertation are required. The remaining courses are selected by the student in consultation with the supervisory committee.

Comprehensive Examinations. Written and oral comprehensive examinations are required.

Dissertation Requirements. A written dissertation based on original research of high quality that demonstrates proficiency in the area of specialization is required.
Final Examination. The final oral examination in defense of the dissertation is required. Evidence must be presented that the research contribution is publishable in the primary literature.

RESEARCH ACTIVITY

The Interdisciplinary Program in Molecular and Cellular Biology offers research experiences and laboratory training at the forefront of biology. Recent completion of a new wing to the Life Science Center and the opening of the Goldwater Science and Technology Center have made state of the art resources available to students in the program. The faculty strive to provide an environment that builds a base for the pursuit of intellectual development throughout a student’s lifetime.

MOLECULAR AND CELLULAR BIOLOGY (MCB)

MCB 500 Research Methods in Molecular and Cellular Biology. (2)

fall and spring
Rotation laboratory experiences in which students participate in research under the direction of an MCB faculty member. May be repeated for credit.

MCB 501 Seminar: Molecular and Cellular Biology Colloquium. (1)

fall and spring
Presentation of current research by noted researchers in the field. May be repeated for credit.

MCB 555 Advanced Molecular and Cellular Biology I. (3)

fall
Study of structural and functional organization of biomolecules and cells, based on current literature. May be repeated once for credit. 3 hours lecture, discussion. Pre- or corequisites: BCH 461; BIO 543 (or its equivalent).

MCB 556 Advanced Molecular and Cellular Biology II. (3)

spring
Continuation of MCB 555. May be repeated once for credit. 3 hours lecture, discussion. Pre- or corequisites: BCH 462; BIO 543 (or its equivalent).

MCB 576 Functional Genomics. (2)

spring
Functional relevance of genomic sequences; DNA arrays, proteomics, analysis of genomic information for metabolic physiology of organisms. Cross-listed as PLB 576. Credit is allowed for only MCB 576 or PLB 576. Prerequisite: MAT 351.

MCB 591 Seminar: Current Literature in Molecular and Cellular Biology. (1)

fall and spring
Presentation and discussion of current research in the areas of molecular and cellular biology. May be repeated for credit.

MCB 598 Special Topics. (1–4)

selected semesters
MCB 555 and 556 may be taken as one-semester-hour sections listed by the instructor.

MCB 700 Research Methods in Molecular and Cellular Biology. (2)

fall and spring
Rotation laboratory experiences in which students participate in research under the direction of an MCB faculty member. May be repeated for credit.

MCB 701 Seminar: Molecular and Cellular Biology Colloquium. (1)

fall and spring
Presentation of current research by noted researchers in the field. May be repeated for credit.

MCB 791 Seminar: Current Literature in Molecular and Cellular Biology. (1)

fall and spring
Presentation and discussion of current research in the areas of molecular and cellular biology. May be repeated for credit.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

MULTIMEDIA WRITING AND TECHNICAL COMMUNICATION (TWC)

TWC 401 Principles of Technical Communication. (3)

fall and spring
Basic information design principles to produce effective written, oral, and electronic technical communication. Understanding of rhetorical and audience analysis. Pre- or corequisite: TWC 301.

TWC 403 Writing for Professional Publication. (3)

selected semesters
Analyzes the market and examines the publication process, including the roles of the author, editor, and reviewer. Pre- or corequisite: TWC 401.

TWC 411 Principles of Visual Communication. (3)

fall and spring
Basic principles of visual communication in print and electronic media. Understanding graphic and document design, including typography and color. Pre- or corequisite: TWC 401.

TWC 421 Principles of Writing with Technology. (3)

fall and spring
Understanding historical and social impact of technology on writing, with emphasis on multimedia design, computer-mediated communication, and hypertext. Pre- or corequisite: TWC 401.

TWC 431 Principles of Technical Editing. (3)

fall and spring
Basic principles of technical editing (for print and electronic media), including copyediting, reviews, standards, style, and project management. Pre- or corequisite: TWC 401.

TWC 443 Proposal Writing. (3)

once a year
Develops persuasive strategies and themes for researching and writing professional proposals. Pre- or corequisite: TWC 401.

TWC 444 Manual and Instructional Writing. (3)

once a year
Design and development of a user manual, writing instructions, improving graphics and page design, and usability testing. Pre- or corequisite: TWC 401.

TWC 445 Computer Documentation. (3)

once a year
Introduces writing documentation for the computer industry. Pre- or corequisite: TWC 401.

TWC 446 Technical and Scientific Reports. (3)

once a year
Introduces strategies, formats, and techniques of presenting information to technical and scientific audiences. Pre- or corequisite: TWC 401.
TWC 447 Business Reports. (3)
once a year
Introduces strategies, formats, and techniques of presenting information to business and other workplace audiences. Pre- or corequisite: TWC 401.

TWC 484 Internship. (3)
fall and spring
Applies classroom work in a supervised workplace environment. Pre- or corequisite: TWC 411 or 421 or 431.

TWC 490 Capstone. (3)
fall and spring
Development of a professional portfolio, creation of a "culminating document," and synthesis of undergraduate experience. Prerequisite: instructor approval.

TWC 501 Principles of Technical Communication. (3)
fall and spring
Basic information design principles to produce effective written, oral, and electronic technical communication. Understanding of rhetorical and audience analysis. Pre- or corequisite: graduate standing.

TWC 503 Writing for Professional Publication. (3)
selected semesters
Analyzes the market and examines the publication process, including the roles of the author, editor, and reviewer. Pre- or corequisite: TWC 501.

TWC 511 Principles of Visual Communication. (3)
fall and spring
Basic principles of visual communication in print and electronic media. Understanding graphic and document design, including typography and color. Pre- or corequisite: TWC 501.

TWC 521 Principles of Writing with Technology. (3)
fall and spring
Understanding historical and social impact of technology on writing, with emphasis on multimedia design, computer-mediated communication, and hypertext. Pre- or corequisite: TWC 501.

TWC 531 Principles of Technical Editing. (3)
fall and spring
Basic principles of technical editing for print and electronic media, including copyediting, reviews, standards, style, and project management. Pre- or corequisite: TWC 501.

TWC 543 Proposal Writing. (3)
once a year
Develops persuasive strategies and themes for researching and writing professional proposals. Pre- or corequisite: TWC 501.

TWC 544 Manual and Instructional Writing. (3)
once a year
Design and development of a user manual, writing instructions, improving graphics and page design, and usability testing. Pre- or corequisite: TWC 501.

TWC 545 Computer Documentation. (3)
once a year
Introduces writing documentation for the computer industry. Pre- or corequisite: TWC 501.

TWC 546 Technical and Scientific Reports. (3)
once a year
Introduces strategies, formats, and techniques of presenting information to technical and scientific audiences. Pre- or corequisite: TWC 501.

TWC 547 Business Reports. (3)
once a year
Introduces strategies, formats, and techniques of presenting information to business and other workplace audiences. Pre- or corequisite: TWC 501.

TWC 584 Internship. (3)
fall and spring
Applies classroom work in a supervised workplace environment. Pre- or corequisites: TWC 511, 521, 531.

TWC 586 Special Topics. (1–4)
selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Museum Studies

Music

Master's, Doctoral, and Certificate Programs

[herberger/music]
480/965-3371
MUSIC E185

Wayne A. Bailey, Director
Kimberly Marshall, Associate Director for Graduate Studies

Regents' Professors: Hickman, Pagano

Associate Professors: Buck, Bush, Carpenter, Haefer, Holbrook, Kopta, Lyman, May, Rockmaker, Schuring, Smith, Wilson

Assistant Professors: Bryan, Ericson, Feisst, Landschoot, Lingas, McLin, Meir, Norton, Province, Rio, Schmidt, Sullivan, Swartz

Senior Lecturers: A. Campbell, Shellans

Lecturer: Tongret

Academic Professional: G. Campbell

The School of Music in the Katherine K. Herberger College of Fine Arts at ASU is an accredited institutional member of the National Association of Schools of Music. The requirements for entrance and graduation set forth in this catalog are in accordance with the published regulations of the association.

The School of Music is committed to the growth and development of both faculty and students in order that music may be created, performed, studied, and taught with excellence.

The faculty in the School of Music offer graduate programs leading to the M.A. degree in Music with concentrations in ethnomusicology, music history and literature, and music theory.
MUSIC

The faculty also offer a graduate program leading to the professional Master of Music (M.M.) degree in Composition, Music Education, and Performance and the professional Doctor of Musical Arts degree in Music with concentrations in choral conducting, music composition, music education, and solo performance.

Graduate Diagnostic Examinations. All students admitted to graduate degree programs must satisfactorily complete these examinations before any comprehensive examinations may be scheduled. In music theory, the areas are as follows:

1. aural skills;
2. form;
3. analytical skills: 19th-century music; and
4. analytical skills: contemporary music.

In music history, the areas are (1) medieval, renaissance, and baroque and (2) classical, romantic, and contemporary.

Undergraduate Deficiencies. Deficiencies are determined by the school. Removal of all deficiencies is the responsibility of the student and is considered additional to the minimum hours for graduation.

Graduate Assistantships. The deadline is February 15 for teaching assistantship applications.

MASTER OF ARTS

See “Master’s Degrees,” page 94, for general requirements.

Prerequisites. Applicants are expected to have a B.A. degree in Music or the equivalent from an accredited institution.

Admission. Application must be accompanied by evidence of scholarly achievement or potential (e.g., a term paper), letters of recommendation from two persons qualified in the field, and a one- to- two-page personal statement of the applicant’s professional goals.

Program of Study

Ethnomusicology. A minimum of 30 semester hours of graduate credit is required, of which at least 20 semester hours must be in the field of ethnomusicology or related fields, including six semester hours of thesis, and at least six semester hours in music theory.

Music History and Literature. A minimum of 30 semester hours of graduate credit is required, of which at least two-thirds must be in the field of music history and literature and at least six semester hours in music theory.

Music Theory. A minimum of 32 semester hours of graduate credit is required, of which at least 18 must be in the field of music theory and at least 10 must be selected from the fields of music theory, music composition, and music history.

Course Requirements

Ethnomusicology. MUP 587 (two semesters), MHL 568, 591, 592, 599 (Thesis), and six semester hours of music theory.

Music History and Literature. MUP 582 (two semesters), MHL 532, 591 (two semesters), 599 (Thesis), and six hours of music theory.

Music Theory. MTC 520, 525, 527, 528, 599 (Thesis); six semester hours of music history.

Foreign Language Requirements. A passing grade on the foreign language reading examination in French or German is required.

Final Examinations. A final examination (written, oral, or both) is required. An oral examination in defense of the thesis is also required.

MASTER OF MUSIC

The faculty in the School of Music offer a graduate program leading to the professional M.M. degree. Three majors are available: Composition, Music Education, and Performance. For the Music Education major, concentrations are available in

1. choral music,
2. general music,
3. instrumental music, and
4. jazz studies.

Performance majors may focus their education in the following areas of concentration:

1. music theatre/opera musical direction,
2. music theatre/opera performance,
3. performance,
4. performance pedagogy, and
5. piano accompanying.

Prerequisites. A Bachelor of Music degree or its equivalent from an accredited institution is required for admission to the M.M. program.

Admission. Admission to all concentrations under the major in Performance is dependent on a successful audition, either in person or by taped performance.

For admission to the major in Composition, the applicant must submit three original works showing technical facility in composition, letters of recommendation from two qualified persons in the field, and a one- to two-page personal statement of the applicant’s professional goals.

For admission to the M.M. degree in Music Education, the applicant must have completed all requirements for music teacher certification. Postbaccalaureate certification is available and may be completed concurrently with master’s degree work. Letters of recommendation from three qualified persons in the field are also required. For the jazz studies concentration, a video or audio tape of a recent jazz performance (solo or ensemble) by the applicant must be submitted, and a video or audio tape of a jazz ensemble directed by the applicant should also be submitted if available.
GRADUATE PROGRAMS AND COURSES

Students majoring in Performance with a concentration in (solo) performance (voice) and performance pedagogy (voice) are required to take a diction examination in French, German, and Italian during registration week of their first semester. Students who do not pass this examination are required to take the appropriate semester(s) of MUP 250.

For admission to the concentration in performance pedagogy (piano), a minimum of one semester of prior piano pedagogy study including significant intern teaching experience is required. In addition, the student must demonstrate evidence of teaching ability, either in person or by videotape.

Program of Study. The student must complete a minimum of 32 semester hours of graduate courses, of which at least one-third must be in the area of concentration.

Foreign Language Requirements. Vocal performance and vocal performance pedagogy require a total of 16 semester hours of college-level credit in more than one language chosen from French, German, or Italian. The concentration in piano accompanying requires two semesters of college-level study in French, German, or Italian and two semesters of diction (or the equivalent) in the remaining languages in that group. These requirements may be fulfilled in whole or in part through language instruction in secondary and/or undergraduate school or by other means (for more information, see the General Catalog). These language requirements are not part of the 32-hour program of study. However, hours toward the requirements may be taken concurrently with the program of study if a deficiency exists.

Final Examination. A final examination (written, oral, or both) is required. An oral examination in defense of the thesis is required for the major in composition.

COURSE REQUIREMENTS

Composition

Composition. MTC 523 (six semester hours), 525, 599; six hours of music history, three hours of music theory.

Music Education

Choral Music. MUE 548, 549, 550 (or 579), 568, 570; two semester hours of ensemble; six semester hours of music history (including MHL 575); five hours of music theory. One MHL or MTC course must be in contemporary music.

General Music. MUE 548, 549, 550 (or 579), 551, 552; six semester hours of music history; five hours of music theory. One MHL or MTC course must be in contemporary music, and one MHL course or one ensemble must be in ethnomusicology.

Instrumental Music. MUE 548, 549, 550 (or 579), 564, 566; six semester hours of music history; five hours of music theory. One MHL or MTC course must be in contemporary music.

Jazz Studies. MUE 548, 549, 550 (or 579), 560, 562 (two semesters); MUP 509, 510, 517, 518, three semester hours of jazz ensemble; six semester hours of music history; five hours of music theory. One MHL or MTC course must be in contemporary music.

Performance

Performance (Voice). MUP 527 (eight semester hours), 541, 551, 596, 597; performing ensembles (two hours); six hours of music history; five hours of music theory.

Performance (Keyboard). MUP 527 (eight semester hours), 551 (or 581), 596, 597; performing ensembles (two hours); six hours of music history and literature; five hours of music theory.

Performance (Instrumental). MUP 527 (eight semester hours), 551, 581, 596, 597; performing ensembles (two hours); six hours of music history; five hours of music theory.

Piano Accompanying. MUP 527 Studio Instruction (eight semester hours), 511 (or 521 Studio Instruction [four hours]), 588 (four hours), 596, 597; six hours of music history; five hours in music theory.

Performance Pedagogy. MUP 527 (eight semester hours), 541 (voice only), 551 and/or 581, 596, 597; performing ensembles (two hours), (piano only: MUP 440 [or proficiency], 507, 508, 581 [four hours]); six hours in music history; five hours of music theory.

(Music Theatre/Opera) Musical Direction. MUP 511 Studio Instruction: Piano (four semester hours), 551, 571 (two semester hours), 573, 574 (two semester hours), 591 (six semester hours), 596, 597; performance on stage in one production; musical direction of two productions; six hours of music history; five hours of music theory.

(Music Theatre/Opera) Performance. MUP 511 Studio Instruction (eight semester hours), 551, 570 (two semester hours), 571 (three semester hours), 596, 597; a three-hour graduate THP course designed for actors (as approved by supervisory committee); leading roles in two musical theatre productions; six hours of music history; five hours of music theory.

DOCTOR OF MUSICAL ARTS

The Doctor of Musical Arts (D.M.A.) is a professional degree program designed for students desiring high levels of performance, academic proficiency, and preparation for teaching positions at the university level. The major is Music with four concentrations: conducting, music composition, music education, and performance (instrumental, keyboard, piano accompanying, piano pedagogy, voice).

Admission. Students seeking admission normally hold the Master of Music degree. Applicants with other degrees are considered if they have received graduate training similar to that normally expected in a Master of Music degree program. The application for admission must be accompanied by an applicant’s statement relating to goals, preparation, and educational background. The applicant must submit scores for the GRE (quantitative, verbal, and analytical) or the MAT. Three letters of recommendation are required. Applicants must perform a satisfactory audition or submit a tape recording of performances or compositions as appropriate to the concentration. The deadline is February 15 for teaching assistantship applications.

Supervisory Committee. When the program of study is filed, the supervisory committee is appointed by the dean of
the Graduate College upon recommendation of the associate
director for graduate studies and the graduate committee of
the School of Music. The committee consists of five mem-
bers; at least three should be from the major field.

Program of Study. A total of 90 semester hours beyond the
bachelor’s degree is required. Only 36 hours from a master’s
degree or other postgraduate work will be counted toward
the 90 hour requirement. For more information, call the
School of Music, 480/965-3371.

Continuous Enrollment. Once admitted to a D.M.A.
degree program, the student is expected to be enrolled con-
tinuously, excluding summer sessions, until all require-
ments for the degree have been fulfilled. This requirement applies
to students admitted fall 1994 and thereafter. Continuous
enrollment promotes steady progress toward the completion
of the degree and an ongoing relationship between the stu-
dent and faculty offering the program. If a program of study
must be interrupted for one or more semesters, the student
may apply for leave status, not to exceed one calendar year.
A student on leave is not required to pay fees, but is not per-
mitted to place any demands on university faculty or use any
university facilities. A student who interrupts a program
without obtaining leave status may be removed automatical-
ly from the Graduate College, under the assumption that
the student has decided to discontinue the program. A stu-
dent removed from the Graduate College for this reason
may reapply for admission; the application is considered
along with all other new applications to the degree program.

An application for leave status, endorsed by the members
of the student’s supervisory committee and the head of the
academic unit, must be approved by the dean of the Gradu-
ate College. This request must be filed and approved no later
than the last day of registration in the semester of antici-
pated absence.

Residency. In general, the D.M.A. degree student should
expect to spend at least the equivalent of three academic
years beyond the bachelor’s degree in the program. At least
two semesters following the first year (30 to 32 semester
hours) of graduate study must be spent in continuous full-
time residence at ASU. After the first year (30 to 32 semes-
ter hours), at least 54 hours must be completed in residence
at ASU.

Foreign Language Requirements. Competency in at least
one foreign language is required for performance and music
composition concentrations. Some areas of study within
performance require two foreign languages.

Comprehensive Examinations. Near the completion of
course work, the student must request permission to take the
comprehensive examinations through the supervisory com-
mmittee and the School of Music’s associate director for grad-
uate studies. These written and oral examinations are
designed to assess the student’s competency in the major
and supportive fields. Failure in the comprehensive exami-
nations is considered final unless the supervisory committee
recommends, and the dean of the Graduate College
approves, a reexamination. A reexamination may be admin-
istered no sooner than three months and no later than one
year from the date of the original examination. Only one
reexamination is permitted.

Candidacy. Doctoral students should apply for admission
to candidacy immediately after they have met all require-
ments for the degree, except the research paper or disserta-
tion. These requirements include passing the comprehensive
examinations and foreign language examination, if applicable,
and meeting other requirements specified by the aca-
demic unit.

Dissertation, Research Papers, and Recitals. The music
composition and music education concentrations require a
dissertation of an original and creative nature. The conduct-
ing concentration requires a conducting recital plus either a
dissertation or a series of projects and a research paper. The
performance concentration requires at least three recitals
following admission to the program and a research paper.
All candidates must enroll for a total of 24 semester hours
of credit in research (MUP 792), recital (MUP 796), and
dissertation (MUP 799) as appropriate to the concentration.

Final Examination. The final oral examination in defense
of the dissertation or research paper is scheduled by the
Graduate College. The examination is conducted by the
supervisory committee and others appointed by the dean of
the Graduate College. All final oral examinations must be
conducted at least one week before the degree conferral date
and held on the ASU Main campus.

Graduation. The student is eligible for graduation when
the final oral examination has been passed. Graduate Col-
lege scholarship requirements have been met, and the dis-
sertation/research paper has been approved by the supervi-
sory committee, the School of Music’s associate director for
graduate studies, and the dean of the Graduate College.

Applications for graduation should be made no later than
the date specified in the Graduate College calendar.

Maximum Time Limit. D.M.A. candidates must complete
all requirements within five years after the comprehensive
exams have been passed.

POST-BACHELOR’S ARTIST DIPLOMA

The Post-Bachelor’s Artist Diploma graduate certificate
program is intended for a very limited number of the most
gifted performers who demonstrate strong potential for suc-
cessful careers in musical performance.

Admission. Students seeking admission must hold at least a
bachelor’s degree in music or an equivalent conservatory
credential at the time of entrance. All applicants whose
native language is not English must submit a score of at
least 550 on the Test of English as a Foreign Language
(TOEFL). For preliminary screening, every applicant must
submit a letter of application, official transcripts, four letters
of recommendation, and an audio recording containing
works representing a variety of musical styles and compos-
ers. Those applicants recommended for a full audition must
perform an audition recital and be interviewed on the ASU
campus.
GRADUATE PROGRAMS AND COURSES

Program of Study. The Post-Bachelor’s Artist Diploma program is a two-year course of study requiring at least two consecutive semesters of residence. A total of 32 semester hours, including four public recitals, is required. Three of the recitals must be presented on the ASU campus, and one at a venue outside of the metropolitan Phoenix area.

Course Requirements. MUP 527 (sixteen semester hours), 551 (four semester hours), and 581; performing ensembles (two semester hours) and four recitals (eight semester hours).

Related Requirements. The School of Music graduate diagnostic examinations in music theory and music history must be taken during the first semester of study, and all must be passed before the awarding of the Post-Bachelor’s Artist Diploma. Students in voice must pass the graduate-level foreign language diction examination before completing the program. Concurrent enrollment in other degree programs during the course of study is not permitted. Transfer credits from other institutions and/or other degree programs within the ASU School of Music do not count toward the 32 required semester hours.

MUSIC HISTORY/LITERATURE (MHL)
MHL 532 Music Bibliography. (3)
fall
Major historical and analytical writings; systematic and historical collections of music. Prerequisite: reading knowledge of a foreign language recommended.

MHL 535 Medieval Music. (3)
spring in odd years
Music of Europe in the Middle Ages, Gregorian chant, religious and secular monophony and polyphony to 1400.

MHL 536 Music of the Renaissance. (3)
spring in even years
Music in Europe, with emphasis on stylistic concepts and changes, ca. 1400–1580.

MHL 544 World Music I. (3)
fall in odd years
Music of traditional and folk cultures of Africa, Europe, and the Americas.

MHL 545 World Music II. (3)
spring in odd years
Music of the Pacific, Near East, and Asia.

MHL 547 Topics in American Music. (3)
selected semesters
Selected topics in the history of music. Composers working in the Americas with emphasis upon music since 1900.

MHL 557 Topics in Symphonic Literature. (3)
spring in even years
Examines the evolution of the symphony and symphonic poem from the early classic era through the 19th century, with emphasis on the analysis of selected works.

MHL 564 History of Music Instruments. (3)
spring in even years
Survey of the history and development of music instruments in traditional, folk, and art cultures.

MHL 566 Area Studies in Ethnomusicology. (3)
spring
Study of the music of a particular culture, country, or area (e.g., music of Mexico, Latin America, China, Africa). May be repeated for credit.

MHL 568 Introduction to Ethnomusicology. (3)
fall in odd years
Introduces the theory and methodology of the discipline, including bibliography, fieldwork, transcription, analysis, and organology.

MHL 575 History of Choral Music. (3)
fall
Major choral works.

MHL 591 Seminar. (1–12)
fall and spring

MHL 592 Research. (1–12)
fall and spring

MHL 599 Thesis. (1–12)
fall and spring

MHL 644 Notation of Polyphonic Music. (3)
spring in even years
Music notation from the 15th through 17th centuries, including problems of transcription into modern notation.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

MUSIC THEORY AND COMPOSITION (MTC)
MTC 516 Baroque Music. (3)
spring in even years
Detailed analysis of selected examples of music from the Baroque period.

MTC 517 Classic Music. (3)
spring in odd years
Detailed analysis of selected examples of music from the Classic period.

MTC 518 Romantic Music. (3)
fall in even years
Detailed analysis of selected examples of music from the Romantic period.

MTC 519 Late 19th-/Early 20th-Century Music. (3)
fall in odd years
Detailed analysis of selected examples of music from the late 19th and early 20th centuries.

MTC 520 Analytical Techniques. (3)
spring and summer
Analytical techniques systematically applied to music. Concentration on structural and compositional procedures.

MTC 523 Advanced Composition. (2–3)
fall and spring
Advanced music composition, including complex techniques and larger structure. May be repeated for credit. Prerequisite: instructor approval.

MTC 525 Pedagogy of Theory. (3)
fall in even years
Practices and principles of teaching music theory. Emphasizes most desirable and practical offerings possible. Comparative studies of existing practices.

MTC 527 History of Music Theory. (3)
selected semesters
Theory from Pythagoras to the 16th century. Need not be taken in sequence with MTC 528.

MTC 528 History of Music Theory. (3)
selected semesters
Theory from the 17th century to the present. Need not be taken in sequence with MTC 527.

MTC 555 Computer Music Notation. (2)
selected semesters
Instruction in preparing score and parts of music compositions using various music notation software packages. Credit cannot be applied toward the graduate theory requirement. Lecture, lab. Prerequisite: instructor approval.

MTC 591 Seminar. (1–12)
fall and spring

MTC 592 Research. (1–12)
fall and spring

MTC 599 Thesis. (1–12)
fall and spring

MTC 647 Directions in New Music. (3)
selected semesters
Studies in contemporary idioms and aesthetics drawn from recent works of visiting composers; involves analytical discourse, critical writ-
MUSIC EDUCATION (MUE)

MUE 548 Introduction to Research in Music Education. (3)
fall and summer
Introduces historical, quantitative, and qualitative research methods and sources as they apply to research in music education.

MUE 549 Foundations of Music Education. (3)
once a year
Historical/sociological survey of formal and informal music teaching and learning practices from the ancient Greeks to the present, including the evolution of philosophies and learning theories.

MUE 550 Studies in Music Curricula. (3)
once a year
Scope and sequence of musical experiences. Development of criteria for the evaluation of music curricula.

MUE 551 Advanced Studies in Elementary School Music. (3)
once a year
For experienced teachers; organization and content of K–6 general music classes. Emphasizes teaching music reading and ear training to young children.

MUE 552 Advanced Studies in Secondary General Music. (3)
once a year
Organization and content of school music classes that are not performance oriented.

MUE 553 Contemporary Elementary Music. (3)
selected semesters
Identification and development of materials and techniques for teaching special units of music study to elementary (K–8) children.

MUE 560 Jazz Pedagogy. (3)
spring in odd years
Study of pedagogy, repertoire, and technique of instruction in jazz styles, ensemble techniques, and performance practice for school ensembles. Lecture, lab, discussion, observation. Prerequisite: M.M., Music Education major.

MUE 562 Jazz Ensemble Rehearsal Techniques. (1)
fall and spring
Conducting and rehearsal techniques for school jazz ensembles. Lab. Prerequisite: M.M., Music Education major.

MUE 564 Instrumental Music, Advanced Rehearsal Techniques. (3)
once a year
In-depth analysis of instrumental techniques in preparation for a thorough discussion of band tuning problems and solutions. Discussion of productive conducting and rehearsal techniques for school music teachers.

MUE 566 Instrumental Literature for Schools. (3)
once a year
Comprehensive study and analysis of all types of instrumental music.

MUE 568 Choral Music, Advanced Rehearsal Techniques. (3)
once a year
Musical and vocal techniques necessary for presentation of choral literature. Analysis and experimentation with psychological, acoustical, and other problems of rehearsal and performance.

MUE 570 Choral Literature for Schools. (3)
once a year
Comprehensive study and analysis of choral music for the high school with special emphasis on octavo literature.

MUE 579 Psychology of Music. (3)
once a year
Nature of musicality and its evaluation. Review of recent research.

MUE 585 Vocal Acoustics and Production. (3)
once a year
In-depth approach to the psychological/physiological workings of the vocal mechanism.

MUE 733 Contemporary Issues and Research in Music Education. (3)
once a year
Emphasizes recent research relating to music instruction at all levels; current and historical issues in choral, general, and instrumental music.

MUE 744 Higher Education Instruction. (3)
once a year
Philosophical and psychological principles of college/university teaching. Patterns of music teacher education and a projection of course outlines.

MUE 755 Historical Research in Music Education. (3)
summer
Knowledge and insights related to conducting historical research in music education. Includes development of a mini-proposal for a dissertation on the history of music education.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

MUSIC PERFORMANCE (MUP)

MUP 507 Group Piano Practicum. (2)
fall
Curricula, materials, and teaching techniques for group teaching at the university and community college levels. Observation/supervised teaching in group piano.

MUP 508 Studio Observation. (1)
fall
Weekly observation of studio teaching by various piano faculty. Paper as final requirement. Prerequisite: M.M. pianist student in Performance major (performance pedagogy or solo performance concentration).

MUP 509 Jazz Keyboard Harmony. (1)
fall
Emphasizes jazz chords and chord progressions, harmonization, voicing, and analysis of transcriptions. Lab. Prerequisite: M.M., Music Education student.

MUP 510 Jazz Keyboard Harmony. (1)
spring
Continuation of MUP 509. Lab. Prerequisite: MUP 509.

MUP 511 Studio Instruction. (2)
fall and spring
Bassoon, cello, clarinet, contrabass, cornet, euphonium, flute, guitar, harp, harpsichord, horn, oboe, organ, percussion, piano, saxophone, trombone, trumpet, tuba, viola, violin, voice. Minimum contact of 1 hour plus studio class weekly. May be repeated for credit. May not be taken for audit. Fee. Prerequisites: any graduate music major; placement examination; audition.

MUP 517 Advanced Improvisation. (1)
fall
Improvisation techniques within the context of advanced jazz literature. Must be taken in sequence with MUP 518. Lab. Prerequisites: placement examination; audition.

MUP 518 Advanced Improvisation. (1)
spring
Continuation of MUP 517. Lab. Prerequisite: MUP 517.

MUP 521 Studio Instruction. (1)
fall, spring, summer
Secondary or minor instrument instruction. Bassoon, cello, clarinet, contrabass, cornet, euphonium, flute, guitar, harp, harpsichord, horn, oboe, organ, percussion, piano, saxophone, trombone, trumpet, tuba, viola, violin, voice. Minimum contact of 1/2 hour per week. May be repeated for credit. May not be taken for audit. Fee. Prerequisites: any graduate music major; instructor approval.
MUP 527 Studio Instruction. (2 or 4)
fall and spring
Bassoon, cello, clarinet, contrabass, cornet, euphonium, flute, guitar, harp, harpsichord, horn, oboe, organ, percussion, piano, saxophone, trombone, trumpet, tuba, viola, violin, voice. Minimum contact of 1/2 hour per week. May be repeated for credit. May not be taken for audit. Fee. Prerequisites: M.M., Performance major; placement examination; audition.

MUP 540 Advanced Conducting. (3)
fall and spring

MUP 541 The Art Song. (3)
selected semesters
Seminar on solo song from its beginning to the present day.

MUP 544 Chamber Orchestra. (1)
fall and spring
Important masterpieces from all periods of music are performed throughout the year. May be repeated for credit. Prerequisite: instructor approval.

MUP 545 Symphony Orchestra. (1)
fall and spring
Masterpieces of symphony orchestra literature. 3 times per week. May be repeated for credit. Prerequisite: audition with director.

MUP 546 Sinfonietta. (1)
fall and spring
Symphonic orchestra that presents approximately six concerts annually, performing masterpieces of the classical repertoire. 3 times per week. May be repeated for credit. Prerequisite: audition with director.

MUP 550 Choral Union. (1)
fall and spring
Open to all students in the university and to interested singers in the community by audition. Preparation and performance of the larger choral works. 2 hours per week. May be repeated for credit. Prerequisite: audition with director.

MUP 551 Repertoire. (2)
fall and spring
Literature available for performance in all performing media. May be repeated for credit.

MUP 552 Concert Choir. (1)
fall and spring
Important masterpieces from all periods of music are performed. May be repeated for credit. Prerequisite: instructor approval.

MUP 553 University Choir. (1)
fall and spring
4 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 555 Sun Devil Singers. (1)
fall and spring
Rehearsal and performance of music for mixed voices. 3 hours per week. May be repeated for credit. Prerequisites: audition with director; instructor approval.

MUP 557 Women’s Chorus. (1)
fall and spring
2 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 561 Marching and Concert Bands. (1)
fall and spring
Staging of formations and drills for football games and other events (fall); masterpieces of symphonic band literature (spring). Meets daily. May be repeated for credit. Prerequisite: audition with director.

MUP 562 Wind Ensemble. (1)
fall and spring
Rehearsal and performance of literature for wind ensemble. 2 hours per week in fall, 4 hours in spring. May be repeated for credit. Performing ensemble. Prerequisite: instructor approval.

MUP 563 Chamber Winds. (1)
fall and spring
Rehearsal and performance of advanced literature for chamber winds. 2 hours per week. May be repeated for credit. Performing ensemble. Prerequisite: instructor approval.

MUP 570 Music Theatre: Techniques. (1)
fall and spring
Exercises and improvisations for the singing actor emphasizing body awareness, isolations, and freedom of the vocal and breath mechanisms. Section 1 (Interpretation); Section 2 (Expression); Section 3 (Movement for Singers). Each Section: 3 hours per week. May be repeated for credit.

MUP 571 Music Theatre: Workshops. (1)
fall and spring
Development of specific skills for the musical-dramatic interpretation. Section 1 (Role Preparation); Section 2 (Styles); Section 3 (Opera Scenes); Section 4 (Musical Comedy); Section 5 (Revue Ensembles). Each section: 1 hour lecture, demonstration, 1 lab per week. May be repeated for credit.

MUP 572 Music Theatre: Orchestras. (1)
fall and spring
Participation in Lyric Opera Theatre productions. Section 1 (Orchestra); Section 2 (Chamber Orchestra); Section 3 (Chamber Ensemble). May be repeated for credit. Prerequisites: audition with director; instructor approval.

MUP 573 Music Theatre: Performance. (1)
fall and spring
Participation in Lyric Opera Theatre productions. Section 1 (Principal Roles); Section 2 (Chorus). May be repeated for credit. Prerequisites: audition with director; instructor approval.

MUP 574 Music Theatre: Production. (1)
fall and spring
Participation in Lyric Opera Theatre productions. Section 1 (Vocal Performance); Section 2 (Technical Music Theatre); Section 3 (Problems in Production) to be taken concurrently with MUP 573, Section 2. May be repeated for credit.

MUP 576 New Music Ensemble. (1)
fall and spring
Rehearsal and performance of music written in the last 20 years. May be repeated for credit. Prerequisite: instructor approval.

MUP 579 Chamber Music Ensembles. (1)
fall and spring
String, brass, woodwind, percussion, keyboard, vocal, and mixed ensembles. 2 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 580 Performance Pedagogy and Materials. (2)
fall and spring
Principles and methods of performance techniques for each performance field. May be repeated for credit.

MUP 582 Collegium Musicum. (1)
selected semesters
Singers and instrumentalists specializing in the performance of early and unusual music. 2 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 585 Percussion Ensemble. (1)
fall and spring
Rehearsal and performance of standard and original repertoire for the percussion ensemble and related instruments. 2 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 586 Jazz Band. (1)
fall and spring
Rehearsal and performance of new, traditional, and Latin literature for jazz bands. 4 hours per week. May be repeated for credit. Prerequisite: instructor approval.

MUP 587 Ethnomusicology Ensembles. (1)
fall and spring
Performance learning experience for the music of various cultures of the world. May be repeated for credit. Prerequisite: knowledge of instrument or instructor approval.

MUP 598 Piano Accompanying. (1)
fall and spring
Piano accompaniments found in vocal and instrumental literature; discussion of styles and performance practices; experience in public performance. 2 hours per week. May be repeated for credit. Prerequisite: Performance major with a concentration in piano accompanying or instructor approval.

MUP 591 Seminar. (1–12)
selected semesters
MUP 595 Continuing Registration. (1)
fall and spring
MUP 596 Solo Performance. (1)
fall and spring
May be full recital, major operatic role, solo performance with orchestra, ensemble, or lecture recital. Prerequisite: M.M. candidate in applied music.
MUP 597 Solo Performance. (1)
fall and spring
See MUP 596.
MUP 671 Choral Repertoire. (3)
selected semesters
Examines large choral/orchestral works to determine their musical and textual characteristics from a conductor's point of view.
MUP 727 Studio Instruction. (2 or 4)
fall and spring
Minimum contact of 1 hour per week. May be repeated for credit. Conducting students register for 2 semester hours; all other students register for 4 semester hours. Fee. Prerequisite: D.M.A. candidate.
MUP 751 Seminar in Piano Literature. (2)
fall in odd years
In-depth study of selected topics related to the standard piano literature. Requires research paper, bibliography, class presentation. Seminar.
MUP 792 Research. (1–12)
fall, spring, summer
MUP 796 Solo Performance. (1–15)
fall and spring
May be repeated for credit. Prerequisite: D.M.A. candidate.
MUP 799 Dissertation. (1–15)
fall and spring
Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Music Education

See “Music,” page 274.

Natural Science
Master’s Program

The Master of Natural Science (M.N.S.) degree offers the opportunity for interdisciplinary graduate training in the natural sciences (biological sciences, mathematics, and physical sciences) and cognate areas. The degree program is especially suited for individuals who desire professional training rather than research training. Because of designed flexibility, the degree also offers the opportunity for individualized professional graduate programs depending upon the backgrounds and goals of the students. The major is Natural Science; students are expected to emphasize course work in two or more areas of concentration. The program must be interdisciplinary.

More information can be found under the various majors in the natural sciences and by contacting faculty offering these concentrations:

1. biology,
2. chemistry,
3. geological sciences,
4. mathematics,
5. microbiology,
6. physics, and
7. plant biology.

Admission. See “Admission to the Graduate College,” page 84. A prerequisite for admission is the availability of resources for the proposed program and having a faculty member in one of the departments serve as a graduate advisor. The submission of scores on the GRE (verbal, quantitative, and analytical) is required of all applicants.

Supervisory Committee. The supervisory committee, consisting of three faculty members, is appointed by the dean of the Graduate College upon the recommendation of the chair of the academic unit in which the graduate advisor serves as a faculty member. The supervisory committee is formed soon after the student has been admitted to the degree program. The graduate advisor and student suggest names of persons to serve on the supervisory committee. The composition of the supervisory committee must reflect the interdisciplinary nature of the program.

Program of Study. A program of study is recommended by the supervisory committee after conferring with the student. The minimum number of semester hours required for the degree is 30. More may be required by the supervisory committee depending upon the background of the student and the nature of the proposed program. In some cases undergraduate courses may be required to remove deficiencies.

Foreign Language Requirements. None.

Final Examinations. A final written or oral examination, or both, is required. Each examination is administered by the supervisory committee.

COURSES

For course information, refer to the catalog sections of the majors corresponding to the M.N.S.
Nonprofit Leadership and Management
Certificate Program

Robert F. Ashcraft, Director, Center for Nonprofit Leadership and Management

The certificate in Nonprofit Leadership and Management, offered through the College of Public Programs, is a graduate program that provides students with an understanding of the nonprofit sector’s role in society and with the skills necessary for effective leadership and management of these organizations. The program is administered through an interdisciplinary faculty committee representing the Department of Recreation Management and Tourism, the School of Public Affairs, and other departments. The objective of this program is to provide students with professional skills needed by leaders in the nonprofit sector, including the understanding of the historical and philosophical context for nonprofit organizations in society, the management of human resources (paid and volunteer), the theory and practice of philanthropy, financial management practices, and other topical content areas.

The certificate program requires a minimum of 15 semester hours of course work. To qualify for the certificate, the student must complete three core classes and two classes from a selected list. A practicum experience is also required of students lacking direct experience in nonprofit sector work. The program is available to students who are pursuing their graduate degree in a chosen field of study and who have expressed interest in pursuing careers in the nonprofit sector. In addition, the program is well suited for working professionals who may or may not be pursuing a graduate degree but who wish to strengthen their skills and connections to the nonprofit community. All applicants must have two years of demonstrable nonprofit experience to obtain the certificate.

For more information, see “Center for Nonprofit Leadership and Management,” page 37, or call 480/965-0607.

NONPROFIT LEADERSHIP AND MANAGEMENT (NLM)

NLM 510 Historical and Philosophical Foundations of Nonprofits in America. (3)
fall
Explores the history and role of the nonprofit sector in American society; contemporary issues and delivery systems. Lecture, case study.

NLM 520 Financial Management in Nonprofit Organizations. (3)
spring
Reviews funding structures utilized by nonprofit organizations; financial tools used by managers; fund raising practices and tools. Lecture, case study.

NLM 540 Volunteer and Human Resources in Nonprofit Organization. (3)
fall
Managing the volunteer and paid staff human resources in nonprofit organizations; practices and theories. Lecture, case study.

Nursing

Master’s and Certificate Programs

nursing.asu.edu
480/965-3948
NUR 444

Karen H. Sousa, Interim Associate Dean for Graduate Programs and Research

Professors: Durand, Fleury, Komnenich, Mattson, Perry, Thuerber

Associate Professors: Alpers, Brillhart, Cesarotti, Dirksen, Ismeurt, Killeen, McCarthy, Ruiz, Sousa

Assistant Professors: McGrath, Pickens, Sehested, Shearer, Tann

Clinical Professor: Bell

Clinical Associate Professors: Armbruster, Fargotstein, Hagler, Jasper, Kastenbaum, Link, Morris, Stillwell, White

Clinical Assistant Professors: P. Johnson, W. Johnson, Nunez, Sayles, Wotring

Instructor: Rosdahl

The faculty in the College of Nursing offer a graduate program leading to the M.S. degree in Nursing. Concentrations are available in one of the following areas:

1. adult health nursing with options in primary care of chronically ill adults or acute care,
2. community health nursing,
3. psychiatric/mental health nursing,
4. family health nursing,
5. parent-child nursing with options in nursing of children (acute or primary focus), and neonatal nursing, and
6. women’s health nursing.

The purpose of the graduate program is to provide an academic environment that fosters scholarship, critical thinking, creativity, and prepares nurses for leadership as nurse specialists. The graduate program offers advanced level courses that can be used as a base for doctoral study and for functional role development in teaching.

The master’s program is designed to prepare graduates to:

1. synthesize advanced knowledge using concepts, theories, principles, and research from nursing, humanities, and sciences to develop advanced nursing practice knowledge which emphasizes the holistic approach;
2. demonstrate leadership, management, and teaching abilities in advanced nursing practice;
The curriculum also provides clinical nurse practitioner roles, including adult, pediatrics, women’s health, psychiatric, and family as well as clinical nurse specialist in parent-child, adult, community, and mental health.

MASTER OF SCIENCE

See “Master’s Degrees,” page 94, for general requirements.

Admission. See “Admission to the Graduate College,” page 84.

Admission to graduate status in the College of Nursing is based upon meeting the following requirements:

1. undergraduate junior or senior GPA equal to 3.00, or a cumulative GPA equal to 3.00 (4.00=A) or higher for any baccalaureate or graduate degree attained;
2. a baccalaureate degree in nursing (or another field) accredited by a nationally recognized accrediting agency;
3. current Arizona license to practice as a registered nurse and/or to enroll in some nursing practicum courses;
4. satisfactory completion of the Graduate Record Examination;
5. one year of work experience in a relevant area of professional nursing (additional years may be required for nurse practitioner roles) before enrolling in specialty concentration clinical courses (not required for community health nursing);
6. a descriptive statistics course in a college or university with a grade of “C” or higher, and an inferential statistics course with a grade of “B” or higher;
7. three professional recommendations from individuals knowledgeable about the applicant’s academic and nursing leadership potential;
8. an interview with a representative of the specialty area;
9. eligibility for admission to the Graduate College;
10. completion of the TOEFL with a score of 550 or higher and of all requirements for the Commission on Foreign Graduate Nursing Schools (CFGNS) if considered an international student; and
11. completion of a baccalaureate level health assessment course within the preceding three years may be required for some nurse practitioner concentrations.

Applicants who reside and work, or plan to reside and work, in rural or medically underserved areas are encouraged to apply for admission. Applications to the program are due December 1 for first consideration. If openings are still available, a second admission review is conducted. Applications are due February 15 for this review.

Admission to the RN-B.S.N.-M.S. program is competitive and occurs once a year in January. To be considered for admission to the RN-B.S.N.-M.S. program, an application to the undergraduate professional Nursing major must be submitted. A separate application for admission is required for the graduate program and to the undergraduate professional Nursing major. Admission to the undergraduate program is required before admission to the graduate program. Applications to the RN-B.S.N.-M.S. program are due September 1.

Supervisory Committee. The dean of the Graduate College, upon recommendation of the College of Nursing associate dean for Graduate Programs and Research, appoints the supervisory committee. The supervisory committee recommends the program of study, administers any special qualifying examinations, administers the final oral examination, and approves the thesis or the nonthesis option project.

Program of Study. The program of study for the M.S. degree consists of a minimum of 40 semester hours for community health areas and from 47 to 53 hours for the nurse practitioner role specialty areas.

The RN-B.S.N.-M.S. program of study consists of at least 30 semester hours; the exact number depends upon specialty concentration and role.

The program of study for the M.S. degree in Nursing requires the completion of a strong research component. This requirement can be accomplished by either of two pathways: (1) completion of the required research course and six hours of thesis or (2) completion of the nonthesis option that includes the required research course (three hours), the research utilization course (three hours), the applied project course (one hour), and a presentation of the completed requirements. The completed project and presentation are evaluated by the student’s supervisory committee.

Required core courses: NUR 500, NUR 551, NUR 552, NUR 589/593 or NUR 599.

Flexible core courses: NUR 510, NUR 521, NUR 524, NUR 528, NUR 553, NUR 554, NUR 526 or NUR 558 or NUR 559, NUR 561, NUR 527 or NUR 564, NUR 525 or NUR 565 or NUR 582 and NUR 586, NUR 584, CHP 500, CHP 501, CHP 502, and HSA 566.

Foreign Language Requirements. None.
GRADUATE PROGRAMS AND COURSES

Degree Requirements. The student must successfully complete the following as defined by the supervisory committee and as approved by the dean of the Graduate College:

1. the program of study,
2. a comprehensive written examination as required,
3. a thesis and final oral examination in defense of the thesis or a nonthesis option project.

POST-MASTER’S CERTIFICATE

The College of Nursing offers a post-master’s certificate program in all specialty concentrations and in both the Clinical Nurse Specialist and Nurse Practitioner roles on a space available basis.

RESEARCH ACTIVITY

Research within the College of Nursing focuses on understanding and addressing risk behaviors in vulnerable populations for the purpose of optimizing health. Research interests of the College of Nursing faculty may be accessed by visiting nursing.asu.edu/facultystaff on the Web.

COMMUNITY HEALTH PRACTICE (CHP)

CHP 500 Foundations for Community Health Practice. (3)
 Fall
 Presents the organization, core functions, and essential services of public health. Presentation, discussion, cooperative learning strategies, student presentations. Prerequisite: admission to graduate Nursing program, or admission to the Master of Public Health degree with a concentration in community health practice, or instructor approval.

CHP 501 Community Health Assessment and Analysis. (3)
 Spring
 Provides theory and practice in community assessment and analysis applicable to community health practice. Presentation, discussion, cooperative learning strategies, group projects. Prerequisite: CHP 500 or instructor approval. Corequisite: NUR 581.

CHP 502 Community Health Program Planning and Evaluation. (3)
 Fall
 Utilizes planning and evaluation theory in planning programs to meet identified health needs of communities. Presentation, discussion, cooperative learning strategies, group projects. Prerequisites: both CHP 500 and 501 or only instructor approval. Corequisite: NUR 587.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

NURSING (NUR)

NUR 500 Research Methods. (3)
 Fall and Spring
 Research methods, including research conceptualization and design in nursing. Prerequisites: admission to graduate Nursing program; a graduate-level course in inferential statistics before enrolling in specialty concentration clinical courses. Pre- or corequisite: NUR 551.

NUR 501 Adult Health Assessment Theory. (4)
 Fall
 Expands adult health assessment/promotion skills through knowledge strategies essential for developing and interpreting data. Lecture, demonstration. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 506.

NUR 502 Adult Health Theory: Primary. (4)
 Spring
 Includes theory/research that guides the management/maintenance of adults with chronic health alterations. Emphasizes psychophysiological interrelationships of illnesses. Lecture, seminar. Prerequisites: NUR 501; all core and flexible core courses except thesis/project. Corequisite: NUR 507.

NUR 503 Management and Maintenance of Adults with Acute Health Alterations: Advanced Theory I. (3)
 Fall

NUR 504 Management and Maintenance of Adults with Acute Health Alterations: Advanced Theory II. (3)
 Spring
 Second required theory course for acute care nurse practitioner students. Examines acute episodic and common chronic dysfunctions from a theoretical and research perspective. Lecture, lab, seminar, conferences. Prerequisites: NUR 503; instructor approval. Corequisite: NUR 509.

NUR 506 Advanced Nursing Practicum: Adult Health. (2–6)
 Fall
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 501.

NUR 507 Advanced Nursing Practicum: Adult Primary. (2–6)
 Spring
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 502.

NUR 508 Advanced Nursing Practicum I: Adult Acute. (3)
 Fall
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 503.

NUR 509 Advanced Nursing Practicum II: Adult Acute. (2–6)
 Spring
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 504.

NUR 510 Community/Public Health Nursing Theory and Role. (3)
 Spring
 Analyzes and synthesizes the theoretical and conceptual basis of community/public health nursing applicable to current and future nursing roles. Lecture, discussion, learner-centered strategies. Prerequisites: CHP 500; NUR 551, 552. Corequisite: NUR 584.

NUR 515 Parent-Child Nursing: Neonatal Theory I. (4)
 Fall
 Concepts, theories, interventions, and research related to the promotion, management, and maintenance of physical, behavioral, and developmental needs of at-risk newborns and infants and their families. Lecture, lab, seminar, conferences. Prerequisite: NUR 525. Corequisite: NUR 516.

NUR 516 Advanced Nursing Practicum I: Parent-Child Nursing/Neonatal Nursing. (6)
 Fall
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 515.

NUR 517 Advanced Nursing Practicum II: Parent-Child Nursing/Neonatal Nursing. (2–6)
 Spring
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 518.

NUR 518 Parent-Child Nursing: Neonatal Theory II. (3)
 Spring
 Proactive neonatal theory course focusing on the concepts, theories, and research related to acute and chronic health deviations of neonates and infants. Lecture, lab, seminar, conferences. Prerequisite: NUR 515. Corequisite: NUR 517.

NUR 519 Advanced Nursing Practicum I: Psychiatric/Mental Health Nursing. (4–6)
 Fall
 Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 522.
NUR 520 Advanced Nursing Practicum II: Psychiatric/Mental Health Nursing. (4–6)
Spring
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences.Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 523.

NUR 521 Psychiatric/Mental Health Nursing: Advanced Mental Health Assessment. (3)
Fall
Theories related to holistic health assessment for the promotion of physical/psychological health; develops skill in mental health assessments. Lecture, seminar, lab. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 519.

NUR 522 Psychiatric/Mental Health Nursing: Advanced Theory I. (3)
Fall
Analyzes issues, theories, and research in restoration and promotion of mental health. Emphasizes developing conceptual framework for psychiatric nursing. Lecture, seminar, lab. Prerequisites: NUR 521; all core and flexible core courses except thesis/project. Corequisite: NUR 520.

NUR 523 Psychiatric/Mental Health Nursing: Advanced Theory II. (3)
Spring
Focuses on development of theoretical basis for intervention and a knowledge base for collaboration and consultation in the mental health area. Lecture, seminar, lab. Prerequisites: NUR 522; all core and flexible core courses except thesis/project. Corequisite: NUR 520.

NUR 524 Psychoneuroimmunology Approaches to Practice. (3)
Summer
Overview of theories, concepts, and research in psychoneuroimmunology, including physiological aspects and application to a holistic nursing model. Seminar. Prerequisite: admission to graduate Nursing program.

NUR 525 Neonatal/Pediatric Physiology and Embryology. (3)
Fall
Prepares advanced practice nurses to use embryology, genetics, and physiology concepts within the nursing process in the care of pediatric and neonatal patients. Lecture, discussion, participative dialogues, case studies. Prerequisites: a course in undergraduate anatomy and a course in undergraduate physiology.

NUR 526 Advanced Neonatal Physical Assessment. (4)
Fall
Develops assessment skills related to neonate/infant, including history-taking, physical, developmental, behavioral, cultural, and genetics assessment to provide comprehensive advanced practice neonatal nursing care. Lecture, seminar, discussion, case studies. Fee. Prerequisite: instructor approval. Corequisite: NUR 525.

NUR 527 Neonatal and Pediatric Pharmacology in Nursing Practice. (3)
Spring
Examines and discusses the rationale, action, and therapeutic effect for using each class of medications employed in neonatal and pediatric health care. Lecture, seminar, discussion, case studies, clinical. Pre- or corequisites: both NUR 525 and 526 (or 558) or only instructor approval.

NUR 528 Advanced Developmental and Family-Centered Nursing Care. (4)
Spring
Provides the foundation for providing advanced nursing care of children that is developmentally supportive, family centered, and culturally competent. Lecture, seminar, discussion, skills laboratory, clinical. Fee. Pre- or corequisites: both NUR 525 and 526 (or 558) or only instructor approval.

NUR 529 Advanced Nursing Practicum I: Parent-Child Nursing/Neonatal of Children. (2–6)
Fall
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 531.

NUR 530 Advanced Nursing Practicum II: Parent-Child Nursing/Neonatal of Children. (2–6)
Spring
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 532.

NUR 531 Nursing of Children: Advanced Theory I. (3)
Fall
Focuses on current practices, research, and issues related to health promotion and disease prevention for children and adolescents. Lecture, seminar. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 529.

NUR 532 Nursing of Children: Advanced Theory II. (3)
Spring
Focuses on concepts, theories, and research as a basis for strategies related to management of illness and health maintenance for children. Lecture, seminar. Prerequisites: NUR 531; all core and flexible core courses except thesis/project. Corequisite: NUR 530.

NUR 533 Nursing of Children with Special Needs: Advanced Theory. (3)
Spring
Focuses on theories, principles, and research related to managing the health of normal perinatal women and families. Cooperative learning strategies. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 536.

NUR 534 Women’s Health: Advanced Theory I. (4)
Fall
Focuses on theories, principles, and research related to the management of normal perinatal women and families. Cooperative learning strategies. Prerequisites: NUR 531; all core and flexible core courses except thesis/project. Corequisite: NUR 580 Practicum (Electives).

NUR 535 Women’s Health: Advanced Theory II. (4)
Spring
Focuses on management of nursing care for high-risk perinatal women and women with common health problems. Cooperative learning strategies. Prerequisites: NUR 534; all core and flexible core courses except thesis/project. Corequisite: NUR 537.

NUR 536 Advanced Nursing Practicum I: Women’s Health Nursing. (6)
Fall
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 534.

NUR 537 Advanced Nursing Practicum II: Women’s Health Nursing. (6)
Spring
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 535.

NUR 551 Theoretical Foundations of Advanced Practice Nursing. (3)
Fall and Spring
Facilitates exploration and examination of the foundations of advanced nursing practice. Lecture, seminar. Prerequisite: admission to graduate Nursing program.

NUR 552 Health Care Issues and Systems. (3)
Fall and Spring
Analyzes organization, financing, service delivery, and outcomes of the health system. Emphasizes policy issues, roles, and challenges for nurses. Lecture, seminar. Prerequisite: admission to graduate Nursing program.

NUR 553 Life Span Development. (3)
Spring
Critical examination of concepts, theories, issues, and research related to developmental periods throughout the life span. Analyzes biological and health, cognitive, psychological, and sociocultural influences. Lecture, discussion. Prerequisite: admission to graduate Nursing program.
GRADUATE PROGRAMS AND COURSES

NUR 554 Population-Based Health Care. (3)
fall and spring
Identification and assessment of specific community health needs and health care patterns of target populations. Addresses promotion, protection, and improvement of health when planning health care services. Lecture, seminar. Prerequisite: admission to graduate Nursing program.

NUR 558 Advanced Pediatric Health Assessment. (3)
fall
Expansion of basic health assessment skills and development of clinical problem-solving skills for advanced practice nurses. Includes assessments of infants, children, and adolescents. Lecture, lab. Fee. Prerequisites: admission to graduate Nursing program; undergraduate health assessment within the last five years.

NUR 559 Advanced Health Assessment. (3)
spring
Expansion of basic health assessment skills and development of clinical problem-solving skills for advanced practice nurses. Includes assessments of infants, children, adolescents, and adults. Lecture, lab. Fee. Prerequisites: admission to graduate Nursing program; undergraduate health assessment within the last five years.

NUR 561 Advanced Practice Nursing Role. (3)
selected semesters
Focuses on the examination and implementation of the role of the advanced practice nurse, emphasizing major components and subcomponents of the role. Lecture, seminar. Prerequisites: NUR 598 ST: Advanced Practice Nursing Role II; admission to graduate nursing program (or instructor approval).

NUR 562 Family Nurse Practitioner Advanced Theory I: Health Promotion, Management, and Maintenance. (4)
fall
First didactic role specialty course. Focuses on concepts and strategies to promote, manage, and maintain health of child, adult, and family. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 568.

NUR 563 Family Nurse Practitioner Advanced Theory II: Health Promotion, Management, and Maintenance. (4)
spring
Second didactic role specialty course utilizing knowledge from previous courses to formulate therapeutic promotion, management, and maintenance for individuals across the life span. Prerequisites: NUR 562; all core and flexible core courses except thesis/project. Corequisite: NUR 569.

NUR 564 Applied Pharmacotherapeutics for Advanced Practice. (3)
spring
Life span course for advanced nurse practitioners to expand knowledge of pharmacotherapeutic concepts and principles. Lecture, discussion, case studies. Prerequisite: admission to graduate Nursing program.

NUR 565 Applied Physiology/Pathophysiology in Advanced Practice. (3)
spring
Advanced nurse practitioner course designed to expand previously acquired anatomy and physiology knowledge and discern pathological alterations across the life span. Lecture, seminar, case studies. Prerequisites: admission to graduate Nursing program; undergraduate anatomy and physiology.

NUR 568 Advanced Nursing Practicum I: Family Health Nursing. (6)
fall
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 562.

NUR 569 Advanced Nursing Practicum II: Family Health Nursing. (6)
spring
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: NUR 563.

NUR 571 Teaching in Nursing Programs. (3)
selected semesters
Analyzes theories, issues, and research related to teaching in nursing. Focuses on the process of teaching/learning. Seminar, cooperative learning. Prerequisite: graduate standing.

NUR 578 Gestalt Therapy I. (3)
fall
Introduces theory and methodology of Gestalt therapy and its uses for mental health promotion and restoration.

NUR 579 Gestalt Therapy II. (3)
spring
Focuses on further development of Gestalt therapy and its application in working with various client populations. Prerequisite: NUR 578.

NUR 580 Practicum. (1–12)
selected semesters
Topics may include the following:
• Clinical Practicum for Advanced Practice Nursing in Pediatric Acute Care I. (6)
 Advanced practice clinical practicum focused on attainment of assessment and management skills to provide specialized care to acutely ill children and facilitate their adaptation. Fee. Prerequisite: admission to graduate Nursing program or instructor approval. Corequisite: NUR 598 ST: Principles of Advanced Practice Nursing in Pediatric Acute Care I.
• Clinical Practicum for Advanced Practice Nursing in Pediatric Acute Care II. (6)
 Clinical course emphasizing continued development of advanced practice skills in the nursing care of critically ill children and integration of the subroles of the pediatric acute care nurse practitioner. Fee. Prerequisite: admission to graduate Nursing program or instructor approval. Corequisite: NUR 598 ST: Principles of Advanced Practice Nursing in Pediatric Acute Care II.
• Practicum (Electives). (1–4)
 Clinical application of theories, concepts, and principles such as health promotion, health management, health maintenance, teaching, management, and special clinical studies. Fee. Prerequisite: NUR 571, 591.

NUR 581 Advanced Nursing Practicum I: Community Health Nursing. (3)
fall
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: CHP 501.

NUR 582 Advanced Human Physiology. (3)
fall
Analyzes major theories and concepts of human physiology. Explores interrelationship of physiology and health. Prerequisite: admission to graduate Nursing program.

NUR 584 Community Health Nursing Internship. (3)
spring
Students operationalize community health nursing/public health content in leadership roles in a variety of community agencies. Clinical internship. Prerequisite: NUR 581 or 587. Corequisite: NUR 510.

NUR 585 Stress Reduction. (3)
selected semesters
Theory, application, and evaluation of mind/body relaxation methods, including physiological effects. Emphasizes research findings. Daily student practice. Prerequisite: graduate standing or instructor approval.

NUR 586 Advanced Pathophysiology. (3)
spring
Manifestation of altered human physiology and disease. Uses systems theory to analyze the relationships of disease and physiology. Prerequisites: NUR 582: admission to graduate Nursing program.

NUR 587 Advanced Nursing Practicum II: Community Health Nursing. (3)
fall
Clinical application of theories, concepts, and principles in area of concentration. Lecture, lab, seminar, conferences. Fee. Prerequisite: admission to graduate Nursing program. Corequisite: CHP 502.
NUR 589 Research Utilization. (3)
fall and spring
Emphasizes the synthesis and application of research to an identified clinical nursing problem. Prerequisites: all core and flexible core courses except thesis/project. Corequisite: NUR 593.

NUR 590 Reading and Conference. (1–12)
selected semesters
Independent study in which a student meets regularly with a faculty member to discuss assignments such as intensive reading in a specialized area, writing synthesis of literature on a specific topic, or writing literature review of a topic. Prerequisite: instructor approval.

NUR 591 Seminar. (2–4)
selected semesters
Advanced topics, including curriculum development and health promotion. Prerequisite: instructor approval in selected courses.

NUR 593 Applied Project. (1)
fall and spring
Preparation of a supervised applied project that is a graduation requirement in some professional majors. Prerequisites: all core and flexible core courses. Corequisite: NUR 589.

NUR 598 Special Topics. (1–4)
selected semesters
Special study, including issues in health care and organizations, management in nursing, ethical issues, and clinical nurse specialist role. Topics may include the following:
- Advanced Practice Nursing Role I. (1)
 Must be followed by NUR 598 ST: Advanced Practice Nursing Role II. Pass/fail.
- Advanced Practice Nursing Role II. (1)
 A sequential continuation of NUR 598 ST: Advanced Practice Nursing Role I. Pass/fail. Prerequisite: NUR 598 ST: Advanced Practice Nursing Role I.
- Principles of Advanced Practice Nursing in Pediatric Acute Care I. (3)
 Advanced practice specialty course analyzing theories and research that guide development of interventions to support the physiological and psychosocial adaptation of critically ill children. Prerequisite: admission to graduate Nursing program or instructor approval. Corequisite: NUR 580 Clinical Practicum for Advanced Practice Nursing in Pediatric Acute Care I.
- Principles of Advanced Practice Nursing in Pediatric Acute Care II. (3)
 Second advanced practice specialty course analyzing theories and research that guide evidence-based practice in the clinical management of critically ill children. Prerequisite: admission to Graduate Nursing program or instructor approval. Corequisite: NUR 580 Clinical Practicum for Advanced Practice Nursing in Pediatric Acute Care II.
- School Nursing Practice. (3)

NUR 599 Thesis. (1–6)
fall, spring, summer
Research proposal development, data collection and analysis, thesis writing, and thesis oral defense. Requires six hours. Prerequisites: all core and flexible core courses.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.
be applied toward the M.S. degree. Additional courses may be selected upon consultation with an advisor.

Foreign Language Requirements. None.

Thesis Requirements. A thesis is required.

Final Examination. A final oral examination in defense of the thesis is required.

RESEARCH ACTIVITY

The faculty in the Department of Nutrition are engaged in a broad range of research activities. Undergraduate students are encouraged to collaborate with faculty and graduate students in the research process. Department faculty are well recognized for their research in the areas of Vitamin C and phytochemical metabolism, nutrition and exercise, the nutrient intake and status of children and young adults, and the nutritional status of free-living and homebound elderly. Nutrition faculty conduct controlled metabolic feeding studies, analyze national food and nutrient data sets, and assess the nutritional status of children and adults. Interdisciplinary research is conducted in conjunction with agribusiness, anthropology, exercise and wellness, immunology, nursing, and other faculty. For more information, access the Department of Nutrition Web site at www.east.asu.edu/ecollege/nutrition.

Dietetic Internship. Admission to the Dietetic Internship is limited to students with regular or unconditional admission to the Department of Nutrition’s graduate program. Students may be accepted into the M.S. in Nutrition degree program without being accepted into the Dietetic Internship. A student accepted into the graduate program without receiving acceptance into the Dietetic Internship will be considered for a future internship, if the student so desires. Admission to the Dietetic Internship also requires submission of an official Verification Statement documenting successful completion of a Didactic Program in Dietetics (DPD). If DPD requirements have not been met at the time application to the Dietetic Internship is made, students must submit an Intent to Complete form and all DPD courses must be completed before entering the internship. Students must provide documentation that a minimum of 150 hours of clinical experience has been completed within the past five years. The Dietetic Internship program is limited to students enrolled in the ASU East Master’s Program in Nutrition; computer matching is used to determine the selection of interns. Students must complete both the M.S. degree requirements and the Internship practicum requirements to satisfy the Dietetic Internship requirements and establish eligibility to sit for the Registration Examination for Dietitians.

NUTRITION (NTR)

NTR 440 Advanced Human Nutrition I. (3)

Fall

Metabolic reactions and interrelationships of vitamins, minerals, and water. Prerequisites: BIO 202 and CHM 231 and NTR 241 (or their equivalents).

NTR 441 Advanced Human Nutrition II. (3)

Spring

Metabolic reactions and interrelationships of carbohydrate, lipid, and protein. Prerequisites: BCH 361 and BIO 202 and NTR 241 and 341 (or their equivalents). CHM 231 strongly recommended.

NTR 442 Experimental Foods. (3)

Selected semesters

Food product development techniques, food evaluation and testing, and investigation of current research into food composition. 2 hours lecture, 3 hours lab. Fee. Prerequisites: CHM 231; NTR 142.

NTR 444 Medical Nutrition Therapy. (3)

Spring and summer

Principles of medical nutrition therapy for prevention and treatment of disease and promotion of health. Prerequisites: BIO 201 and 202 and NTR 341 (or their equivalents). CHM 231 strongly recommended.

NTR 445 Quantity Food Production. (3)

Fall and Spring

Standardized methods of quantity food preparation, operation of institutional equipment, institutional menu planning, quantity food experiences. Fee. Prerequisites: NTR 100 (or 241) and 142 (or their equivalents).

NTR 446 Human Nutrition Assessment Lecture/Laboratory. (3)

Fall and Spring

Clinical and biochemical evaluation of nutritional status. 2 hours lecture, 3 hours lab. Fee. Prerequisites: BCH 361, 367; NTR 440 (or 441).

NTR 448 Community Nutrition. (3)

Fall and Spring

Food-related behaviors; organization and delivery of nutrition services; program design, implementation, and evaluation strategies; nutrition assessment of populations. Prerequisite: NTR 241 (or its equivalent).

NTR 450 Nutrition in the Life Cycle I. (3)

Fall

Emphasizes nutritional needs and problems during pregnancy, lactation, infancy, and childhood. Prerequisite: NTR 100 or 241 (or its equivalent).

NTR 451 Nutrition in the Life Cycle II. (3)

Spring

Nutritional requirements and nutrition-related disorders of adolescence, middle adulthood, and later life. Prerequisite: NTR 100 or 241 (or its equivalent).

NTR 500 Research Methods in Nutrition I. (3)

Fall

Experimental design; overview of data collection techniques; laboratory analyses; statistical methods; development of thesis proposal. Lecture, lab. Fee. Prerequisites: a course each in advanced nutrition, biochemistry, and statistics.

NTR 501 Research Methods in Nutrition II. (3)

Spring

Reviews survey, focus group, and epidemiologic research; develops questionnaires; analyzes large data sets. Prerequisite: NTR 500. Pre- or corequisite: graduate-level statistics course.

NTR 531 Recent Developments in Nutrition. (1)

Fall and Spring

Selected topics addressing current issues in nutrition research. Prerequisites: a course each in advanced nutrition and biochemistry.

NTR 532 Current Research in Nutrition. (3)

Selected semesters

Vitamins and minerals. Prerequisites: a course each in advanced nutrition and biochemistry.

NTR 540 Advanced Micronutrient Metabolism. (3)

Fall

Metabolism of vitamins and minerals, primarily as applied to humans, with research literature emphasized. Prerequisites: a course each in basic nutrition and biochemistry.

NTR 541 Advanced Macronutrient Metabolism. (3)

Spring

Metabolism of protein, fat, and carbohydrate, primarily as applied to humans, with research literature emphasized. Prerequisites: a course each in basic nutrition and biochemistry.
NTR 542 Advanced Food Product Development. (3)
selected semesters
Food product development techniques, food evaluation and testing, and investigation of current research into food composition. 2 hours lecture, 3 hours lab. Fee. Prerequisites: CHM 231 and NTR 142 (or their equivalents).

NTR 544 Therapeutic Nutrition. (3)
spring and summer
Current theories of the nutritional prevention or treatment of various diseases. Prerequisites: a course each in basic nutrition, introduction to diet therapy, and physiology.

NTR 545 Recent Developments in Institutional Feeding. (3)
fall and spring
Current practices in institutional feeding, including supervised practice with local quantity food operation. 1 hour lecture, 6 hours lab. Fee. Prerequisites: NTR 142 and 344 (or their equivalents).

NTR 546 Assessment Techniques in Nutrition. (3)
fall and spring
Clinical and biochemical evaluation of nutritional status. 2 hours lecture, 3 hours lab. Fee. Prerequisites: a course each in advanced nutrition, biochemistry, and physiology.

NTR 548 Nutrition Program Development. (3)
fall and spring
Planning, development, implementation, and evaluation of community nutrition programs, including the process of grant applications. Prerequisites: a course each in basic nutrition and sociology.

NTR 550 Advanced Maternal and Child Nutrition. (3)
fall
In-depth review of metabolic characteristics and nutritional needs of the pregnant woman, lactating woman, infant, and child. Prerequisites: a course each in basic nutrition, biochemistry, and physiology.

NTR 551 Advanced Geriatric Nutrition. (3)
spring
In-depth review of metabolic characteristics and nutritional requirements of the elderly. Prerequisites: a course each in basic nutrition, biochemistry, and physiology.

NTR 580 Dietetics Practicum. (3–9)
fall, spring, summer
Structured practical experience in the Dietetic Internship, supervised by practitioners with whom the student works closely. Practicum. Prerequisite: acceptance into the Dietetic Internship.

NTR 591 Seminar. (1–12)
selected semesters
Topics may include the following:
• Recent Developments in Food and Nutrition. (1)

NTR 592 Research. (1–12)
fall, spring, summer

NTR 593 Applied Project. (1–12)
selected semesters

NTR 594 Conference and Workshop. (1–12)
selected semesters

NTR 596 Special Topics. (3)
fall and spring
In-depth review of recent research in areas, including nutrition and exercise, nutrition and immunology, energy balance, vegetarianism, nutritional pathophysiology. Fee. Prerequisites: a course each in advanced nutrition, biochemistry, and physiology.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Performance

See “Music,” page 274.
GRADUATE PROGRAMS AND COURSES

Course Requirements. Each student is required to take an approved graduate-level course of three semester hours or more in each of the following areas and to obtain at least a “B” in each course: metaphysics/epistemology, value theory and logic; and any two of the following: history of early philosophy, history of modern philosophy, and history of contemporary philosophy.

Foreign Language Requirements. None.

Thesis Requirements. A thesis is required. This written work must demonstrate the ability to carry out independent research in philosophy.

Final Examination. A final oral examination in defense of the thesis is required.

DOCTOR OF PHILOSOPHY

See “Doctoral Degrees,” page 96, for general requirements.

Prerequisites. At least 15 semester hours of upper-division course work in philosophy, including history of ancient and modern philosophy, epistemology, metaphysics, and the equivalent of PHI 333 Introduction to Symbolic Logic are required. No course credits in which a grade of less than “B” has been earned may count toward meeting this 15-semester-hour requirement. If some or most of the prerequisites have already been met, the student may be admitted into the program under “provisional status” or under “regular status with deficiencies.”

Admission. All applications for admission to the Ph.D. degree program in Philosophy must be accompanied by complete transcripts, the applicant’s score in the GRE aptitude exam, three letters of recommendation from persons qualified to judge the applicant’s potential for graduate work in philosophy, a sample of philosophical writing, and a statement of purpose.

Program of Study. The Ph.D. degree program in Philosophy is designed to prepare students for careers as philosophers and teachers of philosophy, and in areas that may benefit from advanced training in philosophy, such as law, civil service, and publishing. The program of study includes 60 semester hours (30 beyond the M.A.) of graduate credit plus 24 semester hours of research and dissertation. The student’s program of study is selected by the student in consultation with the graduate director and the supervisory committee and is approved by the supervisory committee.

Course Requirements. To ensure breadth in the traditional areas of philosophy, students are required to pass these courses with a grade of “B” or higher:

1. two graduate courses in history of philosophy in two different areas chosen from ancient, modern, and contemporary;
2. two graduate courses in value theory;
3. four graduate courses in metaphysics and epistemology (including areas such as philosophy of language, philosophy of science, and philosophy of mind); and
4. one advanced course in symbolic logic at the 400 or 500 level (students may satisfy the logic requirement by examination).

Foreign Language Requirement. None.

Comprehensive Examination. Students will be examined in their area of specialization and competence. The written and oral examinations are based on a bibliography compiled by the student and approved by the student’s advisory committee. Normally these examinations are taken after the student has completed at least 60 hours of graduate course work.

Dissertation Prospectus. Each doctoral candidate will prepare a prospectus of four to seven pages for the dissertation. The format and design of the prospectus will be determined by the candidate and committee chair. The prospectus should include a

1. thesis statement,
2. discussion of relevant literature,
3. discussion of the approach to the project, and
4. bibliography.

Dissertation. A dissertation based on original research is required. Research for the dissertation is supervised by a committee of at least three faculty members, appointed by the graduate director in consultation with the student. Students must enroll for a minimum of 12 semester hours of Research or Dissertation credit after admission to candidacy.

Final Examination. An oral examination in defense of the dissertation is required.

RESEARCH ACTIVITY

The department offers a solid program in traditional and contemporary philosophy. General areas of research include ethics, political philosophy, metaphysics, epistemology, philosophy of law, philosophy of science, philosophy of language, philosophy of religion, and the history of philosophy. The topics treated in recent and current faculty research include moral psychology and moral emotions, environmental ethics, feminist analysis of law, liberty and paternalism, causation, rational choice theory, contextualism in epistemology, perceptual knowledge, the nature of consciousness, the role of the a priori in science and philosophy, truth, reference, externalist theories of mental content, and free will.
PHILOSOPHY (PHI)

PHI 401 Rationalism. (3)
selected semesters
Examines classical philosophical rationalism, as in Descartes, Spinoza, Malebranche, or Leibniz. Contemporary rationalist thought may also be examined. Prerequisites: PHI 302 and 305 (or 309 or 312 or 316 or 317).

PHI 402 Empiricism. (3)
selected semesters
Examines representatives of either classical or contemporary philosophical empiricism, e.g., Bacon, Hobbes, Locke, Butler, Berkeley, Reid, Hume, Mill, Carnap, Ayer. Prerequisites: PHI 302 and 305 (or 309 or 312 or 316 or 317).

PHI 403 Contemporary Analytic Philosophy. (3)
once a year
Aims and methods of such 20th-century philosophers as Frege, Moore, Russell, Wittgenstein, Carnap, Ayer, Wisdom, Ryle, Austin, Strawson, Quine, and Sellars, with application to metaphysics and epistemology. Prerequisites: PHI 302 and 312 (or 314 or 315 or 316 or 317 or 401 or 402).

PHI 413 Advanced Symbolic Logic. (3)
selected semesters
Properties of formal systems axiomatizing propositional and 1st-order predicate logic. May also include modal logic, number theory, and limits of logicism. Prerequisite: PHI 333.

PHI 420 Topics in Philosophy. (3)
once a year
Course descriptions on file in department. May be repeated for credit.
Topics may include the following:
- History of Philosophy
- Metaphysics/Epistemology
- Philosophy of Language/Logic
- Philosophy of Science
- Value Theory
Prerequisite: a relevant upper-division PHI course or instructor approval.

PHI 590 Reading and Conference. (1–12)
selected semesters

PHI 591 Seminar. (1–12)
selected semesters

PHI 592 Research. (1–15)
selected semesters

PHI 593 Thesis. (1–12)
fall and spring

PHI 790 Reading and Conference. (1–12)
selected semesters

PHI 792 Research. (1–15)
selected semesters

PHI 793 Dissertation. (1–15)
selected semesters

OMNIBUS COURSES

For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.
GRA PHIC PROGRAMS AND COURSES

governmental, industrial, or academic institutions and for

teaching at the university, college, or secondary school lev-
elts.

An evaluation of the progress of all graduate students is
made during the spring semester by the Graduate Program
Committee. Students whose progress is considered to be
unsatisfactory are placed on probation. Failure to maintain a
GPA of 3.00 in courses taken while enrolled as a graduate
student, exclusive of research, thesis, and dissertation, is an
indication of unsatisfactory progress and may result in dis-
missal from the program.

Courses can include up to six semester hours of 400-level
courses (see “Graduate Credit Courses,” page 89). Timely
attempts at examination are also required.

Teaching experience in undergraduate physics and
astronomy laboratories and recitations is valuable training
for graduate students and is considered part of the graduate
program.

Departmental colloquia are an integral part of the gradu-
ate program. Regular attendance at colloquia is expected of
all graduate students intending to earn graduate degrees.

MASTER OF SCIENCE

See “Master’s Degrees,” page 94, for general require-
ments.

Admission. To be admitted without deficiencies, entering
graduate students should have adequate undergraduate prepar-
ation equivalent to an undergraduate major of 30 semester
hours in physics and 20 semester hours in mathematics.
Courses in analytic mechanics, electromagnetism, and
modern physics, including quantum mechanics, are parti-
cularly important. Students applying for admission must
submit scores for the verbal, quantitative, and analytical
sections of the Graduate Record Examination (GRE).

Applicants for financial support must submit a score on
the physics advanced examination of the GRE. Subsequent
financial support in the form of teaching or research assis-
tants is contingent upon satisfactory performance in
course work, timely completion of the final examination for
the M.S. degree as described below, and need and avail-
ability of such support. Students on probation are offered finan-
cial support only under exceptional circumstances.

Program of Study. The faculty in the Department of Phys-
ics and Astronomy offer the M.S. degree, emphasizing
either physics solely or in combination with one of the fol-
lowing fields:
1. astronomy and astrophysics,
2. interdisciplinary physics (e.g., with chemistry),
3. technical physics, or
4. physics teaching.

A supervisory committee is formed for each student, usu-
ally during the first year of study. In each case an appro-
priate program of study is selected with the approval of the
supervisory committee. A research project resulting in a
thesis is required of all students enrolled in the M.S. pro-
gram.

Physics. An individual program of study, including courses
in physics, astronomy, mathematics, or related subjects, is
selected with the approval of the supervisory committee to
make up a coherent program of graduate study. The courses
and research project are to be conducted primarily within
the Department of Physics and Astronomy.

Astronomy and Astrophysics. The AST graduate courses are
taken in addition to the required graduate physics courses
for the M.S. program. The research project must be in the
area of astronomy and astrophysics, conducted under the
supervision of one or more faculty members of the Depart-
ment of Physics and Astronomy who specialize in this sub-
ject.

Interdisciplinary Physics. The courses taken are approxi-
ately half in physics and half in some other subject area.
The research project must be in an interdisciplinary area and
conducted under the joint supervision of one faculty
member from the Department of Physics and Astronomy
and one faculty member from another department.

Technical Physics. The research project involves active col-
aboration with an industrial or government laboratory
under the supervision of a faculty member from the Depart-
ment of Physics and Astronomy and may be conducted
either in the Department of Physics and Astronomy or in the
outside laboratory. At least half the courses taken must be in
physics.

Physics Teaching. The course of study and research are
designed to prepare students for a career in physics teach-
ing, with appropriate modifications for teaching at the high
school or community college level. At least half the courses

taken must be in physics. Students participate in directed,
evaluated teaching experiences.

Foreign Language Requirements. None.

Thesis Requirements. A thesis is required of all students
obtaining the M.S. degree. Every student must complete at
least six semester hours of PHY 592 or PHY 599. However,
no more than nine semester hours in these courses can be

counted toward the 30 semester hours required for the M.S.
degree.

Final Examination. The final examination for the M.S.
degree is an oral examination on the subject of the student’s
thesis and on graduate course work taken.

MASTER OF NATURAL SCIENCE

The Master of Natural Science (M.N.S.) degree curricu-
num provides interdisciplinary graduate training in physics,
physical science, or physics education. The degree is espe-
cially suited for individuals who desire professional training
rather than research training. Designed for flexibility, the
curriculum also features individualized professional gradu-
ate programs. These programs are well-suited to the back-
grounds and goals of students. The major is Natural Science
and students are expected to emphasize course work in two
or more areas of concentration. The program must be inter-
disciplinary.

See “Master’s Degrees,” page 94, for general require-
ments. See “Natural Science,” page 281, for Master’s of
Natural Science degrees based in subjects other than phys-
ics.
Admission. Prerequisites for admission are the availability of resources for the proposed program and a Department of Physics and Astronomy faculty member designated to serve as a graduate advisor. The submission of scores on the GRE (verbal, quantitative, and analytical) is required of all applicants. To obtain application forms, access the department Web site at phy.asu.edu.

Supervisory Committee. The supervisory committee, consisting of three faculty members, is appointed by the dean of the Graduate College upon the recommendation of the chair of the Department of Physics and Astronomy. The supervisory committee is formed soon after the student has been admitted to the degree program, and must reflect the interdisciplinary nature of the program. The graduate advisor and the student suggest names of persons to serve on the supervisory committee.

Program of Study. The supervisory committee recommends the program of study, after conferring with the student. A minimum of 30 semester hours is required for the degree. The supervisory committee may require more courses, depending upon the background of the student and the nature of the proposed program. In some cases undergraduate courses may be required to overcome deficiencies. Additional information about the M.N.S. for high school physics teachers is available on the department Web site at phy.asu.edu.

Foreign Language Requirements. None.

Final Examinations. A final written or oral examination, or both, is required. Each examination is administered by the supervisory committee.

DOCTOR OF PHILOSOPHY

See “Doctor of Philosophy,” page 96, for general requirements.

Admission. This program is designed for students with a high-level of ability who show promise for independent research. An applicant holding a baccalaureate degree should have the same undergraduate preparation as for admission to the master’s program. An applicant presenting acceptable graduate credit, earned at this or another institution must demonstrate mastery of this material. See “Written Comprehensive Examination” and “Oral Comprehensive Examination,” page 294.

Students applying for admission must submit scores for the verbal, quantitative, and analytical sections of the GRE.

Applicants for financial support must submit a score on the physics advanced examination of the GRE. Subsequent financial support in the form of teaching or research assistantships is contingent upon satisfactory performance in course work, timely completion of examinations, including the written and oral Ph.D. comprehensive examinations, and need and availability of such support. Students on probation are offered support only under exceptional circumstances. The period for which a Ph.D. candidate may receive financial support through the Department of Physics and Astronomy does not normally exceed six years.

Program of Study. In order to accommodate the needs for training in preparation for the wide variety of occupations of professional physicists and astrophysicists, in areas ranging from academic faculty to industrial research to administrative positions, doctoral degree programs are offered in physics or applied physics. Within the physics program a wide range of options are offered, as stated below. The goal is to provide, through course work and independent study, competence at advanced levels in fundamental, applied and interdisciplinary branches of physics and astronomy, and demonstrated ability in independent research.

Students enrolled in the Ph.D. program may obtain an “M.S. degree in passing” by satisfactorily filing and completing an M.S. Program of Study, obtaining a GPA of at least 3.00 in a set of core courses which total 24 semester hours, and passing a written comprehensive examination. The core courses shall be those designated as appropriate for the particular emphasis chosen for the student’s doctoral program. Graduate core courses satisfactorily completed at other institutions may be waived upon petition by the Graduate Program Committee. Up to nine semester hours of classroom-based courses may be substituted for core courses that are waived by the Graduate Program Committee.

Each student’s progress is overseen by a supervisory committee appointed for the student usually during the first year of study. This committee also approves the student’s program of study.

The student’s individual program includes courses selected, with the approval of the supervisory committee, to make up a coherent program for the achievement of these goals. Students may pursue a wide range of options, including emphasis on one of the following: astronomy and astrophysics, biophysics, condensed matter and materials physics, physics education, or subatomic physics. The program may be directed toward either theoretical or experimental aspects, and frequently includes courses in cognate fields, particularly mathematics, depending on the student’s selected field.

Applied Physics. With advising from the supervisory committee, a program of study is selected with a major portion in physics and a minor portion (nine semester hours or more to be passed with at least a “B” average) in another area. The supervisory committee should include appropriate representation from the minor area.

Astronomy and Astrophysics. The following six graduate courses are required for all students enrolled in the emphasis in astronomy and astrophysics.

AST 521 Stars and Interstellar Medium I ..3
AST 522 Stars and Interstellar Medium II3
AST 523 Stars and Interstellar Medium III3
AST 531 Galaxies and Cosmology I ...3
AST 532 Galaxies and Cosmology II3
AST 533 Galaxies and Cosmology III3

Condensed Matter and Materials Physics. The following courses are required for all students enrolled in the emphasis on condensed matter and materials physics.

AST 521 Stars and Interstellar Medium I ..3
AST 522 Stars and Interstellar Medium II3
AST 523 Stars and Interstellar Medium III3
AST 531 Galaxies and Cosmology I ...3
AST 532 Galaxies and Cosmology II3
AST 533 Galaxies and Cosmology III3
GRADUATE PROGRAMS AND COURSES

PHY 511 Materials Physics I ..3
PHY 512 Materials Physics II ...3
PHY 576 Quantum Theory I ..3
PHY 577 Quantum Theory II ..3
PHY 581 Quantum Theory of Solids I3

Subatomic Physics. The following courses are required for all students enrolled in the emphasis on subatomic physics.

PHY 567 Relativistic Quantum Mechanics and Field Theory3
PHY 568 Particle Physics Phenomenology3
PHY 576 Quantum Theory I ..3
PHY 577 Quantum Theory II ..3
Select two of the following three courses6
PHY 462 Subatomic Physics (3)
PHY 561 Nuclear Physics (3)
PHY 569 The Standard Model and Beyond (3)

Course Requirements. The following basic core of courses or their equivalents is required of all students:

PHY 521 Classical Mechanics..3
PHY 531 Advanced Electricity and Magnetism3
PHY 532 Electrodynamics..3
PHY 541 Statistical Physics ..3
PHY 571 Quantum Physics ..3
or PHY 576 Quantum Theory I (3)*

Total ...15

* PHY 576 is the first half of a two-course sequence with PHY 577, which is taken in its entirety.

Additional course work is selected according to emphasis, with the advice and approval of the supervisory committee. Students should ensure that they have sufficient mathematical experience, and if in any doubt, should take PHY 501 Methods of Theoretical Physics.

Foreign Language Requirements. None.

Comprehensive Examinations. The following examinations are required of all students intending to earn the Ph.D. degree.

Written Comprehensive Examination

The subject matter of this examination is classical and quantum mechanics, statistical mechanics, and electricity and magnetism, as represented by the courses PHY 521, 531, 532, 541 and 571 or 576. The examination is given in two four-hour sessions on separate days, but there is no division of subject matter for the separate sessions.

The written comprehensive examination is normally given twice yearly, approximately during registration weeks of the fall and spring semesters. Ph.D. candidates must attempt the examination before the beginning of their third semester as full-time students in the physics graduate program and must pass the examination before the beginning of the fourth semester. Students enrolled in the Ph.D. degree may be awarded the M.S. degree in passing.

Additional written examinations may be set to examine areas of emphasis. Any further written examinations will be given at least once yearly and must be passed by the beginning of the sixth semester.

Oral Comprehensive Examination

Ph.D. candidates are required to pass the oral comprehensive examination by the end of their sixth semester as full-time students in the physics graduate program. The examination is administered and graded by the student’s supervisory committee. It tests the student’s general knowledge of one broad area of current activity in physics, such as:

1. astronomy and astrophysics;
2. atomic and molecular physics;
3. biophysics;
4. condensed matter and materials physics; or
5. subatomic physics.

The area tested is to be chosen by the student at the time of scheduling the examination. The student may request to be examined on specific subjects in addition to one of the areas. A proposal for the dissertation topic may be included in the material covered by the examination, subject to prior agreement between the student and the supervisory committee.

Dissertation Requirements. A dissertation representing an original contribution to the field, as a result of independent work suitable for publication in a refereed physics or astronomy journal, is required.

Final Examination. A final oral examination that covers, but is not necessarily limited to, the subject of the dissertation is required.

RESEARCH ACTIVITY

Faculty in the Department of Physics and Astronomy perform frontier research that spans the largest and smallest scales—from the galaxies of the cosmos to the substructure of subatomic particles. Topics include investigations in areas such as astrophysics, biophysics, condensed matter physics, surface physics and materials science, and subatomic physics. Faculty and students regularly conduct experiments using state-of-the-art instruments such as electron microscopes, lasers, computers, space-borne and ground-based observatories, and detector facilities at international accelerator laboratories. This experimental work is completed by theoretical investigations associated with the phenomena explored by these experiments as well as other cutting-edge topics. A major effort in physics education research is influential both locally and nationally. For more details, visit the department’s Web site at phy.asu.edu.

ASTRONOMY (AST)

AST 421 Astrophysics I. (3)

Fall
Selected astrophysical topics, including stellar evolution, star formation, interstellar medium, galactic structure, extragalactic astronomy, high-energy astrophysics, and cosmology. Prerequisites: AST 321, 322; PHY 311, 314.

AST 422 Astrophysics II. (3)

Spring
Same range of astrophysical topics as for AST 421 but different specific topics are emphasized in a given year. Prerequisites: AST 321, 322; PHY 311, 314.
AST 521 Stars and Interstellar Medium I. (3)
Spring
Radiative transfer, atomic and molecular properties, stellar atmospheres, line profiles, nonlocal thermodynamic equilibrium, interstellar gas and dust, star formation. Prerequisites: PHY 521, 531, 571 (or its equivalent).

AST 522 Stars and Interstellar Medium II. (3)
Fall
Stellar structure, radiative transport, boundary conditions, equations of state, nuclear reactions, opacity, nucleosynthesis, chemical evolution of the galaxy, stellar evolution. Prerequisite: AST 521 or instructor approval.

AST 523 Stars and Interstellar Medium III. (3)
Spring
Structure of the interstellar medium, gaseous nebulae, recombination theory, ionization fronts and shocks waves, galactic magnetic fields, magnetohydrodynamics, molecular clouds. Prerequisite: AST 522 or instructor approval.

AST 531 Galaxies and Cosmology I. (3)
Spring
Structure and evolution of the Milky Way, stellar properties, populations and associations/clusters, interstellar medium, dark matter. Prerequisites: PHY 521, 531, 571 (or its equivalent).

AST 532 Galaxies and Cosmology II. (3)
Fall
Structure of galaxies and the nearby universe, Hubble sequence, kappa-space, stellar populations, active galaxies, galaxy environments. Prerequisite: AST 531 or instructor approval.

AST 533 Galaxies and Cosmology III. (3)
Spring
Issues in modern cosmology, the distance scale, cosmological parameters, cosmological tests, cosmic background radiation, early universe, galaxy formation and evolution. Prerequisite: AST 532 or instructor approval.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

PHYSICAL SCIENCES (PHS)

PHS 505 Energy and the Environment. (3)
Summer
Current problems in energy resources, production, consumption, and conservation. Studio. Prerequisite: instructor approval.

PHS 510 Inquiry Physical Science I. (3)
Summer
Inquiry approach to physical science, standards-based, intended for elementary school teachers. Topics selected: kinematics, dynamics, electricity, magnetism, light, astronomy. Studio. Prerequisite: instructor approval.

PHS 520 Inquiry Physical Science II. (3)
Summer
Inquiry approach to physics and astronomy, standards-based, intended for middle school teachers. Emphasizes technology and modeling. Studio. Prerequisite: instructor approval.

PHS 530 Methods of Physics Teaching I. (3)
Summer
Inquiry approach to high school physics teaching. Studio. Prerequisite: instructor approval.

PHS 531 Methods of Physics Teaching II. (3)
Summer
Extension of modeling techniques introduced in PHY 580. Studio. Prerequisite: PHS 530 or instructor approval.

PHS 534 Methods of Teaching Physical Science I, II, III. (3)
Summer
Design of curriculum and conduct of instruction for physical science courses. Studio. Prerequisite: instructor approval.

PHS 540 Integrated Physics and Chemistry. (3)
Summer
Collaborative inquiry methods for teaching and coordinating physics and chemistry. Studio. Prerequisite: CHM 480 or PHS 530 or PHY 480 or instructor approval.

PHS 542 Integrated Mathematics and Physics. (3)
Summer
Mathematical models and modeling as an integrating theme for secondary mathematics and physics. Studio. Prerequisite: instructor approval.

PHS 550 Physics and Astronomy. (3)
Summer
Astronomy curricula and projects for secondary school, with emphasis on the role of physics in astronomy. Studio. Prerequisite: instructor approval.

PHS 556 Astrophysics. (3)
Summer
Structure and evolution of stars, galaxies, and the universe. For secondary school teachers. Studio. Prerequisite: instructor approval.

PHS 560 Matter and Light. (3)
Summer
Interactions of light with matter. Lasers and spectroscopy. Studio. Prerequisite: instructor approval.

PHS 564 Light and Electron Optics. (3)
Summer
Principles and practice of electron-optical instruments. Studio. Prerequisite: instructor approval.

PHS 570 Spacetime Physics. (3)
Summer
Special and general theories of relativity with implications for space and time travel. Studio. Prerequisite: instructor approval.

PHS 581 Structure and Matter and Its Properties. (3)
Summer
Models of matter and its properties. Studio. Prerequisite: instructor approval.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

PHYSICS (PHY)

PHY 412 Classical Particles, Fields, and Matter III. (3)
Fall
Electromagnetic fields of moving charges, Maxwell’s equations, harmonic phenomena, oscillations, waves, electromagnetic radiation, covariant electromagnetism, introduction to general relativity. Prerequisites: PHY 311, 333. Corequisite: PHY 416 or instructor approval.

PHY 416 Quantum Physics III. (3)
Fall
Introduces the quantum theory of atoms, molecules, solids and nuclei, Dirac’s equation. Prerequisites: PHY 311, 315. Corequisite: PHY 412 or instructor approval.

PHY 420 Research Paper. (1)
Fall and Spring
Scientific report writing. Culminates in a paper based on library or laboratory research or both. Taken in conjunction with other courses as approved. Conference. Prerequisite: instructor approval.

PHY 441 Statistical and Thermal Physics I. (3)
Fall

PHY 442 Statistical and Thermal Physics II. (3)
Spring

PHY 452 Physical Optics. (3)
Fall
Principles of reflection, refraction, diffraction. Additional topics from contemporary optics may include Fourier transform spectroscopy, linear systems theory, holography. 2 hours lecture, 2 hours lab. Prerequisites: PHY 302, 311, 315. Corequisite: PHY 412.
GRADUATE PROGRAMS AND COURSES

PHY 462 Subatomic Physics. (3)
spring
Nuclear properties, models, decays and reactions; fundamental forces, field theories, symmetry principles: hadrons, quarks, and leptons; the Standard Model. Prerequisites: PHY 311, 315.

PHY 465 Advanced Laboratory II. (2)
fall and spring
Continuation of PHY 334. Students are encouraged to substitute laboratory research project in consultation with faculty sponsor. Prerequisite: PHY 334.

PHY 466 Advanced Laboratory III. (1–3)
fall and spring
Continuation of PHY 465. Prerequisite: PHY 465.

PHY 480 Methods of Teaching Physics. (3)
spring
Evaluation of various approaches to the teaching of high school physics. Preparation of demonstrations and experiments. Organization of a laboratory. Designed for secondary school physics teachers. Prerequisite: instructor approval.

PHY 481 Materials Physics I. (3)
fall
Fundamentals of materials physics: crystal structure, diffraction, elasticity, point defects, dislocations, lattice vibrations, thermal properties, periodic potential, band structure. Credit is allowed for only PHY 481 or 511. Prerequisites: PHY 311, 315.

PHY 482 Materials Physics II. (3)
spring
Electronic behavior of materials: energy bands, electronic properties, metals, semiconductors, insulators, optical properties, magnetic properties, superconductivity, biophysics. Credit is allowed for only PHY 482 or 512. Prerequisite: PHY 481 (or its equivalent).

PHY 498 Pro-Seminar. (1–7)
selected semesters
Topics may include the following:
• Materials Physics II. (3)

PHY 501 Methods of Theoretical Physics. (3)
fall
Provides mathematical foundations for graduate students in basic and applied physics. Complex variables, vector spaces, operators, matrices, ordinary differential equations, integral equations and transforms, and special functions. May include additional topics.

PHY 502 Methods of Theoretical Physics. (3)
spring
Continuation of PHY 501. Prerequisite: PHY 501.

PHY 511 Materials Physics I. (3)
fall
Fundamentals of materials physics: crystal structure, diffraction, elasticity, point defects, dislocations, lattice vibrations, thermal properties, periodic potential, band structure. Credit is allowed for only PHY 511 or 481. Prerequisites: PHY 311, 315 (or its equivalent).

PHY 512 Materials Physics II. (3)
spring
Electronic behavior of materials: energy bands, electronic properties, metals, semiconductors, insulators, optical properties, magnetic properties, superconductivity, biophysics. Credit is allowed for only PHY 512 or 482. Prerequisite: PHY 511.

PHY 521 Classical Mechanics. (3)
fall
Variational principles, Lagrange’s and Hamilton’s equations, rigid body motion, canonical transformations, Hamilton-Jacobi theory.

PHY 523 Relativity. (3)
selected semesters
Special and general theories of relativity. Prerequisite: PHY 532 or instructor approval.

PHY 531 Advanced Electricity and Magnetism. (3)
fall
Electrostatics and magnetostatics; potential theory and theory of constitutive relations; Maxwell’s equations; the wave equation, plane electromagnetic waves, cavities, and wave guides.

PHY 532 Electrodynamics. (3)
spring
Special theory of relativity, covariant formulation of electromagnetic interactions; inhomogeneous wave equations, Lienard-Wiechert potentials, and radiation fields; interactions of charged particles and electromagnetic waves, scattering, dispersion. Prerequisites: both PHY 412 and 531 or only instructor approval.

PHY 541 Statistical Physics. (3)
spring
Probability theory and principles of statistical inference; evaluating experimental data; foundations of statistical mechanics: general laws of thermodynamics from microscopic theories; calculation of specific properties of bulk matter.

PHY 551 X-Ray and Electron Diffraction. (3)
spring
Fresnel and Fraunhofer diffraction in integral formulation; diffraction of x rays and neutrons by crystal lattices; structures of solids, including crystal structure analysis; theory and techniques of electron microscopy/diffraction of crystalline/noncrystalline specimens. Prerequisite: PHY 481 or instructor approval.

PHY 552 Electron Microscopy I. (3)
fall
Kinematical and dynamical electron diffraction and microscopy. Analysis of defect structures and composition of materials using STEM imaging. Cross-listed as MSE 552/SEM 552. Credit is allowed for only MSE 552 or PHY 552 or SEM 552. Prerequisite: instructor approval.

PHY 553 Electron Microscopy Laboratory I. (3)
fall
Lab support for PHY 552. Cross-listed as MSE 553/SEM 553. Credit is allowed for only MSE 553 or PHY 553 or SEM 553. Pre- or corequisite: MSE 552 or PHY 552 or SEM 552.

PHY 554 Electron Microscopy II. (3)
spring
Determination of structure and composition of materials using high-resolution imaging, convergent beam diffraction, and electron holography. Cross-listed as MSE 554/SEM 554. Credit is allowed for only MSE 554 or PHY 554 or SEM 554. Prerequisite: instructor approval.

PHY 555 Electron Microscopy Laboratory II. (3)
spring
Lab support for PHY 554. Cross-listed as MSE 555/SEM 555. Credit is allowed for only MSE 555 or PHY 555 or SEM 555. Pre- or corequisite: MSE 554 or PHY 554 or SEM 554.

PHY 561 Nuclear Physics. (3)
fall and spring
Properties of nuclei, conservation laws, internucleon forces, nuclear structure models, reactions and decays, quark model with applications to nuclei. Prerequisite: PHY 576 or instructor approval.

PHY 562 Nuclear Physics. (3)
fall and spring
Continuation of PHY 561. Prerequisite: PHY 561 or instructor approval.

PHY 567 Relativistic Quantum Mechanics and Field Theory. (3)
spring
Relativistic quantum mechanics and introduction to the quantum field theory of scalar, spinor, and electromagnetic fields. QED through renormalization theory. Prerequisite: PHY 577.

PHY 568 Particle Physics Phenomenology. (3)
spring
Hadron physics, internal symmetry groups, weak interactions, lepton and quark phenomenology. Prerequisite: PHY 577.

PHY 569 The Standard Model and Beyond. (3)
fall
Introduces and applies the standard model of strong and electroweak interactions. Special topics include recent developments. Prerequisites: PHY 567, 568.

PHY 571 Quantum Physics. (3)
fall and spring
Reviews modern physics, chemistry, math. Differential equation, operator, matrix formulations. Free particle, bound-state problems. Examples across physics and astronomy. Prerequisites: a combination of modern physics and linear and complex algebra and differential equations or only instructor approval.
PHY 576 Quantum Theory. (3)
spring
Abstract approach to quantum mechanics in Hilbert space; observables and their corresponding operators, eigenstates, and eigenvalues; quantum dynamics; approximation methods; systems of identical particles; angular momentum and group representation theory; collision processes; relativistic quantum theory. Prerequisite: PHY 521.

PHY 577 Quantum Theory. (3)
fall
Continuation of PHY 576. Prerequisite: PHY 576.

PHY 580 Practicum. (1–12)
selected semesters

PHY 581 Quantum Theory of Solids I. (3)
fall
Band structure models: pseudopotentials, density functional theory; optical and magnetic response; elementary excitations; transport theory, electron-photon interactions and superconductivity. Prerequisites: PHY 511 (or instructor approval), 576.

PHY 582 Quantum Theory of Solids II. (3)
spring
Continuation of PHY 581: broken symmetry; phase transitions; disorder, topological defects; nano-structures topics; soft condensed matter and current research. Prerequisites: PHY 511 (or instructor approval), 576. Corequisite: PHY 512 or instructor approval.

PHY 587 Quantum Optics. (3)
fall and spring
Quantization of the electromagnetic field. Quantum theory of coherence, photon counting, photon states, lasers, density operators, and atomic Raman scattering. Prerequisite: PHY 576.

PHY 588 Quantum Optics. (3)
fall and spring
Continuation of PHY 587. Prerequisite: PHY 587.

PHY 592 Research. (1–12)
selected semesters

PHY 598 Special Topics. (1–4)
fall and spring
Topics may include the following:
- Electron Microscopy I. (3)
 fall
 Microanalysis of the structure and composition of materials using images, diffraction, x rays, and energy loss spectroscopy. Requires knowledge of elementary crystallography, reciprocal lattice, stereographic projections, and complex variables. Prerequisite: instructor approval.
- Electron Microscopy II. (3)
 spring
 Microanalysis of the structure and composition of materials using images, diffraction, x rays, and energy loss spectroscopy. Requires knowledge of elementary crystallography, reciprocal lattice, stereographic projections, and complex variables. Prerequisite: instructor approval.
- Materials Physics II. (3)
 spring
 Surface and Thin Films. (3)
 See ASU Online or phy.asu.edu/classes for details. Internet course.

PHY 599 Thesis. (1–12)
selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.
GRADUATE PROGRAMS AND COURSES

Program of Study. A minimum of 30 semester hours of graduate credit is required. The program must include at least three semester hours of research, three semester hours of thesis, one semester of the core course PLB 502 Perspectives in Plant Biology and one hour of participatory seminar (PLB 591). The program is planned by the student in consultation with the supervisory committee.

Foreign Language Requirements. None.

Comprehensive Examination. Not required.

Thesis Requirements. A thesis is required.

Final Examination. A final research seminar and an oral examination covering the thesis and related subject matter are required.

DOCTOR OF PHILOSOPHY

See “Doctor of Philosophy,” page 96, for general requirements.

Program of Study. A minimum of 84 semester hours of graduate credit is required. The program must include at least 24 hours of research and dissertation credit and at least 30 hours of formal graduate course work. One semester of the core course PLB 502 Perspectives in Plant Biology and two hours of participatory seminar (PLB 591) are included in the required course work. Courses numbered 590 or 790 (Reading and Conference) are not considered formal courses. The program is planned by the student in consultation with a program committee that also administers and evaluates the comprehensive examinations.

Foreign Language Requirements. Completion at the undergraduate level of a one-year course with a grade of “C” or higher is required. The supervisory committee may require the student to complete additional study.

Comprehensive Examinations. Written and oral comprehensive examinations administered and evaluated by the student’s program committee are required.

Dissertation Requirements. A dissertation based on original work of high quality, demonstrating proficiency in the student’s area of interest, is required. (See “Doctoral Degrees,” page 96.)

Final Examination. A final oral examination in defense of the dissertation is required. It is administered by a dissertation committee consisting of four to five members who previously served on the student’s program committee.

MOLECULAR BIOSCIENCES/BIOTECHNOLOGY (MBB)

MBB 445 Techniques in Molecular Biology/Genetics. (2)
fall and spring
Molecular genetic principles; plasmid construction, purification, and characterization; PCR; mutageneses; hybridization and sequence analysis; protein quantitation, immunologic detection, and electrophoresis. Cross-listed as MIC 445. Credit is allowed for only MBB 445 or MIC 445. Prerequisites: both BIO 340 and MIC 302 or only instructor approval.

MBB 446 Techniques in Molecular Biology/Genetics Lab. (2)
fall and spring
Molecular genetic techniques; plasmid construction, purification, an characterization; PCR; mutageneses; hybridization and sequence analysis; protein quantitation; immunologic detection and electrophoresis. Cross-listed as MIC 446. Credit is allowed for only MBB 446 or MIC 446. Pre- or corequisite: MBB 445 or MIC 445.

MBB 484 Internship. (3)
selected semesters

MBB 490 Capstone: Issues in Biotechnology. (2)
fall and spring
Integrates science and humanities within problem-solving exercises dealing with intellectual property, ethics, regulatory issues, business practices, and commercialization. Prerequisite: Molecular Biosciences/Biotechnology major or instructor approval.

MBB 499 Individualized Instruction. (3)
selected semesters

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

PLANT BIOLOGY (PLB)

PLB 400 Lichenology. (3)
spring in odd years
Chemistry, ecology, physiology, and taxonomy of lichens. 2 hours lecture, 3 hours lab. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 (or its equivalent).

PLB 402 Mycology. (3)
spring
Fungal morphology and systematics with an introduction to fungal cell biology, ecology, economic significance, and growth and development. 2 hours lecture, 3 hours lab. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 (or its equivalent) or only MIC 206.

PLB 404 Phycology. (4)
spring
Algae (both fresh water and marine forms), emphasizing field collection and identification of local representatives. Morphological, ecological, and economic aspects of the algae. 3 hours lecture, 3 hours lab. Fee. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 (or its equivalent).

PLB 410 Angiosperm Taxonomy. (3)
spring
Principles underlying angiosperm phylogeny. 2 hours lecture, 3 hours lab. Prerequisite: PLB 310 or instructor approval.

PLB 411 Trees and Shrubs of Arizona. (3)
fall
Identification of woody plants from desert, chaparral, and forest habitats in Arizona. 1 hour lecture, 3 hours lab, field trips. Fee. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 (or its equivalent) or only instructor approval.

PLB 414 Plant Pathology. (3)
spring
Identification and control of biotic and abiotic factors that cause common disease problems to plants. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 (or its equivalent) or only instructor approval.

PLB 502 Perspectives in Plant Biology. (3)
fall
Introduces major areas of research within the department with the goal of broadening knowledge to enable multidisciplinary research and communication. Prerequisite: instructor approval.

PLB 583 OTS: Fieldwork in Tropical Biology. (6–8)
spring and summer
Intensive field-oriented classes with Organization for Tropical Studies (OTS) in Costa Rica with emphasis on research in ecology and systematics. Lecture, lab, fieldwork. Cross-listed as BIO 583. Credit is allowed for only BIO 583 or PLB 583. Prerequisites: graduate standing; a course in basic ecology.

PLB 591 Seminar. (1)
fall and spring
PLB 420 Plant Ecology: Organisms and Populations. (3) selected semesters
Factors and controls on the physiological ecology and organization of plants and plant populations using empirical and theoretical approaches. 2 hours lecture, 3 hours lab. Fee. Prerequisite: BIO 320 or PLB 322 (or its equivalent).

PLB 421 Plant Ecology: Communities and Ecosystems. (3) selected semesters
Plant community organization, field sampling techniques, and the structure and function of terrestrial ecosystems emphasizing the role of vegetation. 2 hours lecture, 3 hours lab. Fee. Prerequisite: BIO 320 or PLB 322 (or its equivalent).

PLB 422 Plant Geography. (3) selected semesters
Plant communities of the world and their interpretation, emphasizing North American plant associations. Cross-listed as GPH 422. Credit is allowed for only GPH 422 or PLB 422. Prerequisites: preferably both PLB 200 and 201 or only BIO 187 or only GPH 111.

PLB 430 Statistical Analyses in Environmental Science. (3) selected semesters
ANOVAS, 1-way classification of factorial and partially hierarchic designs; introductory multivariate statistics. Fee. Prerequisite: MAT 210 (or its equivalent).

PLB 432 Computer Applications in Biology. (3) selected semesters
Computer analysis techniques in biology emphasizing data entry, management and analysis, and graphic portrayal. Employs mainframe and microcomputers. 2 hours lecture, 3 hours lab. Cross-listed as BIO 406. Credit is allowed for only BIO 406 or PLB 432. Fee. Prerequisites: both BIO 187 and MAT 117 (or 210) or only instructor approval.

PLB 434 Landscape Ecological Analysis and Modeling. (3) selected semesters
Technical methods of landscape ecological analyses. Includes mathematical and statistical examination and modeling of landscape ecological patterns and processes. Prerequisites: both BIO 320 and 406 or only PLB 432 (or its equivalent).

PLB 520 Plant Structural Adaptation. (1–3) selected semesters
Adaptive traits of leaf size/unique growth form on energy transfer efficiency; stomatal architecture and water-use efficiency; applications of stable isotopes. Prerequisite: BIO 320 or PLB 306 (or 308 or its equivalent).

PLB 522 Plant Photosynthetic Adaptation. (1–3) selected semesters
Evolution and ecology of C4 and CAM; adaptive traits improving competitive ability in natural environments; comparative physiology of desert plants. Prerequisite: PLB 308 or instructor approval.

PLB 524 Methods in Environmental Plant Physiology. (3) selected semesters
Techniques to measure and quantify microclimate and mass transfer. Supporting principles. 2 hours lecture, 3 hours lab. Prerequisite: BIO 320 or PLB 308.

PLB 440 Photobiology. (3) selected semesters
Principles underlying the effects of light on growth, development, and behavior of plants, animals, and microorganisms. Cross-listed as BIO 464. Credit is allowed for only BIO 464 or PLB 440. Prerequisites: CHM 231 (or 331); 12 hours in life sciences.

PLB 444 Plant Growth and Development. (3) selected semesters
Molecular basis of development, role of signal transduction pathways/ gene regulation in control of organ formation, pollination, germination, and growth. Prerequisite: BIO 353.

PLB 530 Introduction to Structural and Molecular Biology. (4) selected semesters
Structure and function of cells, proteins, membranes, and the genome; gene expression and biogenesis of structures; application of computer imaging. Cross-listed as CBS 530. Credit is allowed for only CBS 530 or PLB 530. Prerequisites: one year of biology; one semester of organic chemistry.

PLB 540 Plant Biochemistry. (3) selected semesters
Structure/function relationships of molecules, emphasizing processes unique to plants: carbon fixation, synthesis of storage products, pigments, and secondary metabolites. Prerequisites: both BCH 361 and PLB 308 or only instructor approval.

PLB 550 Plant Molecular Biology. (2) selected semesters
Biochemistry and molecular biology of plant organelles, including protein targeting, plant viruses, and molecular designs for plant improvements. Prerequisite: instructor approval.

PLB 552 Plant Genetic Engineering. (3) selected semesters
Plant transformation utilization of transgenic plants, transient gene expression assays, and applications of plant genetic engineering. Prerequisite: Instructor approval.

PLB 553 Plant Genetic Engineering Laboratory. (2) selected semesters
Plant transformation, utilization of transgenic plants, transient gene expression assays, and applications of plant genetic engineering. 6 hours lab. Prerequisite: Instructor approval.

PLB 554 Plant Biotechnology. (3) selected semesters
Aseptic, clonal propagation of plants and in vitro culture of cells, organs, and tissues. 2 hours lecture, 3 hours lab. Prerequisite: ABS 363 or PLB 308.

PLB 558 Molecular Mechanisms of Photosynthesis. (3) selected semesters
Structure and function of photosynthetic complexes; mechanism of energy conversion in plants, bacteria, and model systems. Cross-listed as BCH 568. Credit is allowed for only BCH 568 or PLB 558. Prerequisite: instructor approval.

PLB 576 Functional Genomics. (2) selected semesters
Functional relevance of genomic sequences; DNA arrays, proteomics, analysis of genomic information for metabolic physiology of organisms. Cross-listed as MCB 576. Credit is allowed for only MCB 576 or PLB 576. Prerequisite: MAT 351.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Political Science
Master’s and Doctoral Programs
www.asu.edu/clas/polisci
480/965-7667
MTC 205

Patrick J. Kenney, Chair

Professors: Ball, Berman, Chaudhuri, Dagger, Jones, Kahn, Kenney, McDonough, McGowan, Simon, Walker, Youngblood

Associate Professors: Ashley, Crittenden, Dantico, Doty, M. Elman, Herrera, Keating, Mitchell, Simhony, Spruyt, Warner

Assistant Professors: Chin, C. Elman, Goren, Hoekstra

The faculty in the Department of Political Science offer graduate programs leading to the M.A. and Ph.D. degrees in Political Science. Concentrations are available in American politics, comparative politics, international relations, and political theory.
GRADUATE PROGRAMS AND COURSES

Students admitted to the Master of Education degree with a major in Secondary Education may also elect political science as the subject matter field.

MASTER OF ARTS

See “Master’s Degrees,” page 94, for general requirements.

Admission. The M.A. degree provides advanced education for those students preparing for teaching, research, or applied careers in political science. It may be taken as a terminal program or as a step toward eventual fulfillment of the requirements for the Ph.D. Students may apply directly to the doctoral program or master’s program.

In addition to the materials sent to the Graduate College, the following items should be submitted to the director of graduate studies of the Department of Political Science by April 15 in order to ensure recommendations for admission to the M.A. program beginning the following fall:

1. scores from the verbal, quantitative, and analytical sections of the Graduate Record Examination (GRE);
2. three letters of recommendation from persons who can evaluate the applicant’s academic performance and potential;
3. a career overview statement which describes the applicant’s educational objectives; and
4. a writing sample that best represents the applicant’s thinking and writing skills.

Applicants for financial aid should submit these items and complete the application form for graduate assistantships by February 15. The department also has an early admission deadline in late November. Candidates who have submitted a complete application by that date will be notified of their status by the end of the calendar year.

Undergraduate course work in political science is not a prerequisite for admission.

It is assumed, however, that M.A. students have a basic understanding of elementary statistics and the undergraduate content of the political science fields of concentration that they wish to study. Students without such a background should allow sufficient time to acquire it.

Program of Study. A minimum of 30 semester hours is required for the Master of Arts degree. All candidates must take POS 503 and the core course in the student’s major and minor fields. Additional hours must be taken in graduate-level courses and seminars. Each student is expected to take seminars each semester in his/her major field, minor field, and an elective until course work is completed. If the thesis option is followed, the program must include a combination of at least six semester hours of research (POS 592) and thesis (POS 599) credit. A maximum of six semester hours in approved courses taken outside the department or six hours of reading and conference (POS 590) courses may count towards the 30-hour requirement.

Foreign Language Requirement. None.

Thesis Option Requirements. M.A. students seeking admission to the Ph.D. program are expected to complete the thesis early in their fourth semester. A copy of the Format Manual is available in the Graduate College. A careful review of this document well in advance of preparation for the final copy of the thesis is recommended. An oral examination in defense of the thesis is required.

Non-Thesis Option Requirements. The program of study must include 27-hours of approved course work and at least one three-hour reading and conference course (POS 590) in the fourth semester to enhance the student’s research capabilities. A research paper must be defended by the end of the third semester before a faculty committee appointed by the director of Graduate Studies.

DOCTOR OF PHILOSOPHY

See “Doctor of Philosophy,” page 96, for general requirements.

Admission. In addition to meeting Graduate College requirements, an applicant for the Ph.D. program must take the verbal, quantitative, and analytical sections of the GRE; supply a career overview statement that describes the applicant’s educational objectives; submit three letters of recommendation from persons who can evaluate the applicant’s undergraduate and graduate work; and provide a sample of writing. These items should be submitted to the director of graduate studies of the Department of Political Science by February 15. Applicants for financial aid should also complete and submit the application form for graduate assistantships by February 15. The department also has an early admission deadline in late November. Candidates who have submitted a complete application by that date will be notified of their status by the end of the calendar year.

It is assumed that Ph.D. students have a basic understanding of elementary statistics and the content of the areas of concentration that they wish to study. Students without such a background should allow sufficient time to acquire it.

Program of Study. A minimum of 60 semester hours of graduate courses beyond the baccalaureate degree and approved by the student’s supervisory committee shall constitute the formal course preparation, followed by a minimum of 24 semester hours of research and dissertation work. The supervisory committee has three members, including the committee chair from the student’s major field, and two members from a minor field. As part of the 60 semester hours, the student must take POS 503 and 603. A maximum of 12 semester hours of approved course work outside the department and 12 semester hours of approved reading and conference courses (POS 590 and 790) may count toward the 60 semester hours. Grades of “A,” “B,” or “Y,” must be obtained in all course work counted for the Ph.D. degree.

Master’s in Passing. For students without an M.A. who are admitted directly into the Ph.D. program, the department offers a Master’s in Passing. Students opting for the Master’s in Passing must, in the third semester of residence, pass an oral examination of their work. The examination is conducted by a committee composed of members of the Graduate Committee who represent each student’s primary and secondary subfields. Students who pass the oral examina-
tion and have completed 30 semester hours of course work toward the Ph.D. are then awarded the M.A.

Research Skills/Foreign Language Requirements. All Ph.D. students must show proficiency in research and methodological skills. This requirement may be met by showing proficiency in one or more of the following areas: foreign language, quantitative, or qualitative methods. Supervisory committees determine which among those research tools are appropriate for students in their fields of study.

Comprehensive Examinations. The student is required to take three examinations from the fields and subfields of American politics, international relations, comparative politics, and political theory. In the major field, the student takes a written general examination. Additionally, the student takes a written field or subfield examination in one of the remaining fields of political science. An oral examination over the dissertation proposal follows the written examinations.

Dissertation Requirements. The dissertation must be an original contribution to knowledge and demonstrate the student’s proficiency as an independent investigator. The dissertation proposal is approved by the chair of the department upon the recommendation of the student’s dissertation committee. The department chair also approves the dissertation committee. This committee must have a minimum of three members from the department of political science, including a chair from the student’s major field.

Final Examination. A final oral examination is required. This examination is the occasion for the student to defend the dissertation, both as to methods and conclusions, and to demonstrate general competence in the area of concentration.

RESEARCH ACTIVITY

Political science faculty and the department’s curriculum are organized into four areas of concentration. The faculty offer courses and conduct research from a variety of methodological orientations, all with a common thread of theoretically oriented scholarship.

American Politics. Faculty emphasize political behavior and use survey research, experimental designs, and content analysis to collect data and conduct statistical analyses of mass voting patterns, campaign strategies, party politics, the role of the media in political communication, agenda setting and policy development in Congress, and elite-mass linkages. Other faculty emphasize public law and policy with a focus primarily at the state and local levels of government.

International Relations. One group focuses on foreign policy theory and international security, using event chronologies, institutional differences, archival materials, and public records to guide comparative analyses of foreign policy decision-making by different types of regimes, case studies of leaders and their decision-making strategies, state and nation building, nationalism, and policy analyses of issues in the Asia-Pacific region. Another cluster of faculty emphasize critical theory and the international political economy, employing archival sources, statistical data, and texts of legal norms and state practices to conduct analyses of global inequalities in wealth and income, the evolution of statecraft, and the impact of hierarchically-ordered gender and race categories in North-South relations.

Political Theory. Faculty research interests in the area of political theory cover a range of topics in the history of political thought and contemporary political theory. Historical topics include Rousseau, conceptual history, and positive liberalism of the 19th and 20th centuries. Research in contemporary political theory focuses on such themes as autonomy and freedom, rights and obligations, civic virtues, and the idea of the common good; various issues in democratic theory (with particular attention to education), aspects of political and legal theory regarding corporate personality, conceptions of self in various cultures, analysis of myths in aboriginal societies and politics, social ecology, and peace and nonviolence.

Comparative Politics. Faculty in the area of comparative politics investigate a variety of topics in several regions of the globe. Research interests include the political economy of uneven development in Africa, democratization processes within formerly authoritarian regimes in Europe, Latin America, and East Asia, church and state relations in the Philippines, ethnic minority problems in Brazil, problems of federalism in India, and party leadership in France and Italy.

POLITICAL SCIENCE (POS)

POS 501 Methods of Political Science. (3) selected semesters
Problems of method and knowledge in political science, strategies of political inquiry, and issues in philosophy of social science.

POS 502 Philosophy of Political Inquiry. (3) once a year
Problems of knowledge and method in political science, with attention to both empirical and evaluative analysis.

POS 503 Empirical Political Inquiry. (3) once a year
Research methods and techniques of the discipline, emphasizing empirical foundations and analytic methods employed in subfields. Prerequisites: POS 401 (or its equivalent); instructor approval.

POS 530 American Politics. (3) once a year
Examines major debates in the study of American political processes and institutions. Covers parties, media, elections, public opinion, interest groups, and the three branches of government. Seminar. Prerequisite: POS 503 (or its equivalent); instructor approval.

POS 545 Themes in Political Thought. (3) selected semesters
Examines a particular theme or problem in political thought from both a historical and contemporary perspective. May be repeated with approval of the director of graduate studies. Seminar. Prerequisite: POS 503 (or its equivalent); instructor approval.

POS 550 Comparative Politics. (3) once a year
Surveys major approaches across topical areas such as revolutions, authoritarianism, policy processes, interest groups, and electoral politics. Focus varies with instructor. Seminar.

POS 560 International Relations. (3) once a year
Surveys major theoretical approaches and debates in international relations. Seminar.

POS 563 Comparative Asian Security Policies. (3) selected semesters
Analyzes domestic and international constraints, belief systems, and economic components in security decisions by major powers and Asian nations. Seminar. Prerequisite: instructor approval.

POS 590 Reading and Conference. (1–12) selected semesters
GRADUATE PROGRAMS AND COURSES

POS 591 Seminar. (1–12)
 once a year
Topics may include the following:
 • American Politics. (3)
 • Comparative Politics. (3)
 • Global Politics. (3)
 • Political Theory. (3)
POS 592 Research. (1–12)
 selected semesters
POS 598 Special Topics. (1–4)
 once a year
Topics may include the following:
 • American Politics. (3)
 • Comparative Politics. (3)
 • Global Politics. (3)
 • Political Theory. (3)
POS 599 Thesis. (1–12)
 selected semesters
POS 601 Advanced Experimental Research. (3)
 selected semesters
Introduces experimental and quasi-experimental research designs in political research, including laboratory techniques and topics in the analysis of variance. Prerequisite: POS 503 (or its equivalent).
POS 602 Advanced Survey Research. (3)
 selected semesters
Presents design and conduct of political surveys, including sampling, instrument design, scaling, and statistical and graphical analysis of survey data. Prerequisite: POS 503 (or its equivalent).
POS 603 Polimetrics I. (3)
 once a year
Introduces theory and practice of linear regression analysis. Provides skills to read, understand, and evaluate professional literature using regression analysis. Prerequisites: both POS 401 and 503 or only instructor approval.
POS 604 Polimetrics II. (3)
 once a year
Applies quantitative techniques to research topics producing publishable papers through exposure to time-series, logit and probit, and simultaneous equations. Prerequisites: a combination of POS 401 and 503 and 603 or only instructor approval.
POS 606 Qualitative and Textual Analysis. (3)
 spring in odd years
Method and theory for the analysis of qualitative materials, systematic approaches for case studies, content analysis, critical analysis of texts. Discussion, seminar.
POS 635 State Politics and Public Policy. (3)
 selected semesters
Introduces comparative state policy emphasizing policy or performance differences among the states and the reasons for these differences. Seminar. Prerequisites: both POS 530 and 603 or only instructor approval.
POS 636 Electoral Behavior. (3)
 selected semesters
Introduces fundamental concepts of electoral behavior. Emphasizes presidential elections and examines why people vote and how their votes are determined. Seminar. Prerequisites: both POS 530 and 603 or only instructor approval.
POS 638 Law and Politics. (3)
 selected semesters
Emphasizes research into such topics as constitutional law, women and the law, American legal system, judicial process, and judicial selection. Seminar. Prerequisite: instructor approval.
POS 651 Politics of Change and Development. (3)
 selected semesters
Examines contending approaches to national, social, and political change. Seminar. Prerequisite: instructor approval.
POS 660 The Modern World System. (3)
 selected semesters
Theoretically driven, historical analysis of the organization and operation of the international political economy since the 16th century. Seminar. Prerequisite: instructor approval.
POS 661 The State. (3)
 selected semesters
Examines theories of state, state-society relations, and interstate politics emphasizing questions of sovereignty, territoriality, violence, representation, democracy, and change. Seminar. Prerequisite: instructor approval.
POS 662 International Organization. (3)
 selected semesters
History, practical political significance, and future of international institutions, transnational regimes, and other approaches to international organization. Seminar. Prerequisite: instructor approval.
POS 664 War, Peace, and Conflict Processes. (3)
 selected semesters
Systematic analysis of the causes of war, the preconditions for peace, and approaches to the resolution of conflict. Seminar. Prerequisite: instructor approval.
POS 665 Foreign Policy Theory. (3)
 selected semesters
Examines foreign policy theory and methods. Development and critique of research designs analyzing foreign policy processes within and among nations. Seminar. Prerequisite: instructor approval.
POS 691 Seminar. (1–12)
POS 700 Reading and Conference. (1–12)
POS 709 Reading and Conference. (1–12)
POS 790 Reading and Conference. (1–12)
POS 792 Research. (3)
 fall and spring
Projects in various areas of political science. Prerequisite: doctoral student.

Omnibus Courses. For an explanation of courses offered but not specifically listed in this catalog, see “Omnibus Courses,” page 50.

Post-Bachelor's Artist Diploma

See “Post-Bachelor’s Artist Diploma,” page 277.

Post-Master's Nurse Practitioner Certificate

For information, see “Nursing,” page 282, or call the College of Nursing Student Services Office at 480/965-2987.

Professional Accountancy Certificate Program

ASU West offers a postbaccalaureate certificate in Professional Accountancy. For information, see the ASU West Catalog, call 602/543-4567, or access www.west.asu.edu on the Web.